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Abstract  
 

Redundancy allocation problem (RAP) is one of the most important model of reliability optimization 
problems. In literature, there exist two typical formulations for RAP, namely 1) maximization of the 
system reliability under the resource constraints and 2) minimization of the system cost under system 
reliability and resource constraints. We propose an approximate method to solve MSSPS RAP under 
homogeneous and heterogeneous conditions under an absolute error. Numerical experiments are con-
ducted on five published benchmarks and a new randomly generated instance with a larger number of 
subsystems. The approximated solutions exhibit good quality throughout the experiments. 
 
1. Introduction  
 

Reliable systems are important to industrial prac-
titioners and engineering. There are generally four 
methods to improve the system reliability (Coit & 
Zio, 2019):  
(i) increasing the component reliability,  
(ii) paralleling the redundant components,  
(iii) combination of (i) and (ii),  
(iv) reassignment of interchangeable compo-

nents.  
Redundancy allocation problem (RAP) is an im-
portant problem in reliability optimization, which 
determines both the redundancy levels and select 
the version (type) of components (Mellal et al., 
2020; Wang et al., 2020). 
The traditional system structure considered in re-
liability optimization is the binary-state system 
(BSS), where the systems have two possible 
states: perfect working and total failure. However, 
binary-state assumption cannot completely cap-
ture the characteristic of the sophisticated degra-
dation process of engineering component or sys- 

tem. By introducing the intermediate states be-
tween perfect working state and total failure state, 
multi-state models reflect the stochastic perfor-
mance of a system/component in a more accurate 
way. The system with multi-state degradation is 
generally considered as a multi-state system 
(MSS). There are many applications for MSS in 
different fields, such as gas pipeline system (Bao 
et al., 2021), wireless sensor system (Yi et al., 
2021), distributed generation system (Li & Zio, 
2012), wind energy system (Eryilmaz, 2018) and 
mineral water production system (Hao et al., 
2020). The common system structure considered 
in MSS is series-parallel system, i.e. multi-state 
series-parallel system (MSSPS). 
The literature about MSSPS RAP in the past 5 
years can be classified into the following groups. 
The first group considered the different redun-
dancy strategies in RAP, such as mixed-strategy 
of active and cold-standby redundancies (Ardakan 
et al., 2016), and warm-standby (Levitin et al., 
2017). The second group considered optimizing 
the component reliability joint with RAP 
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(Ardakan et al., 2016; Muhuri & Nath, 2019; 
Ouyang et al., 2019; Zhang et al., 2022). The third 
group considered the maintenance action of com-
ponent in RAP (Bei et al., 2017; Bei et al., 2019). 
The forth group of works considered the epistemic 
uncertainty of parameters in RAP and used the ro-
bust optimization method to deal with it (Zhang & 
Li, 2022). 
As for the solving method for MSSPS RAP, sev-
eral heuristic techniques have been proposed, 
such as GA (Levitin et al., 1998; Levitin et al., 
1997), TS (Ouzineb et al., 2008, 2009) and QEA 
(Li & Zio, 2014). Li and Zhang (2022) proposed 
the exact algorithm, RMODP, for MSSPS RAP. 
The size of the state space influences both the 
computational time and memory requirements for 
RMODP algorithm. Therefore, we proposed an 
approximate algorithm for MSSPS RAP which 
can improve the computational rate and guarantee 
the accuracy of the result.  
The chapter is structured as follows. Section 2 
gives the description of MSSPS RAP and gives 
the mathematical formulations. Section 3 states 
the approximate algorithm for MSSPS RAP. In 
Section 4, experiments are conducted to illustrate 
the performance of the algorithm. Finally, the 
conclusion is presented in Section 5.  
 
2. Problem description 
 

2.1. Assumption 
 

We consider MSSPS RAP under the homogene-
ous and heterogenous cases. In each subsystem, 
homogeneous means that components mixing is 
not allowed, and heterogeneous means that the 
component type can be mixed. Therefore, we have 
to determine both the number of component and 
the selection of component type(s). Following are 
the assumptions we considered in this chapter: 
 the components and systems have multiple and 

finite states, 
 the degradation processes of all component are 

independent, 
 the characteristics of the component (reliabil-

ity, cost) are known. 
 
2.2. Mathematical formulation 
 

MSSPS consists of  subsystems connected in 
series. Each subsystem is indexed with  and has 

 types of multi-state components available. The 
type of component in subsystem is index with . 

The component with type  in subsystem  is de-
noted by , which is described by their perfor-
mance , unit cost , and reliability . We 
assume that the number of component state for 
multi-state element  is  and it is index by 

.  has the performance level  with 
probability  for  and 

. The decision variables are to de-
termine the number of all components in the sys-
tem. The number of  is denoted by  for  

, . Thus, the decision vari-
able can be simplified to , where 

.  
The system demand  is a random discrete vari-
able and equals to  with the probability  for 

. Let  denote the performance of 
subsystem . Then, the reliability of subsystem  

 is the probability that the subsystem perfor-
mance meets the system demand and given by 

. The reliability of MSSPS is calcu-
lated by the probability that the system perfor-
mance meets the system demand. Since the sub-
systems are connected in series, the reliability is 
the multiplication of all subsystem reliabilities 
and given by 
 

 

 

 (1) 

 
The methods to evaluate the reliability of MSSPS 
include: the universal generating function (UGF) 
(Ushakov, 1988), the recursive algorithm (Li & 
Zuo, 2008), and the method based on the dynamic 
programming concept with a pseudo-polynomial 
time complexity (Sun et al., 2015). In this chapter, 
we use the dynamic programming method to cal-
culate the system reliability. 
According to the form of the objective function, 
MSSSP RAP can be divided into two types (Kuo 
& Wan, 2007): P1) maximization of the system 
reliability under the resource constraints and P2) 
minimization of the system cost under system re-
liability and resource constraints. The mathemati-
cal formulations of P1 and P2 are given by (2)  
and (3). 
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P1 max  (2.a) 

 

s.t. 

 

 

 

(2.b) 

  . (2.c) 
 

P2 min  (3.a) 

 

s.t. 

 

 

 

(3.b) 

  . (3.c) 
 
3. Approximate algorithm 
 

We propose an approximate method based on the 
exact method, RMODP, proposed in (Li & Zhang 
2022). The size of the state space influences both 
the computational time and memory requirements 
for RMODP algorithm. To handle this difficulty, 
we develop an approximate algorithm with a 
provable absolute error to solve P2, which can 
largely reduce the state space and save the com-
putational time.  
First, we convert the single objective function 
(2.a) into multi-objective functions (4.a), each ob-
jective function  is corresponding to one de-
mand . In this formulation, all objectives are 
separable with decision variables . Thus, P1 is 
transformed into P3 and then all objectives are 
logarithmized to the linear forms, i.e. in P4. The 
objective  is simply repre-
sented by  for . The optimal 
solution of P1 must be included in the set of Pareto 
optimal solutions of P4. Thus, we solve P4 to ob-
tain the Pareto optimal solutions and select the one 
which maximizes P1. 
 

P3 max  

(4.a)    

 max  

 
s.t.  (4.b) 

    
  . (4.c) 

 

P4 max 

 

 

 

(5.a)    

 max 

 

 

 

 

s.t. 

 

 

 

(5.b) 

  . (5.c) 
 
For a given accuracy , the capacity state is 
partitioned into several intervals. Then, we adapt 
the RMODP to the partitioned capacity space.  
The DP-procedure consists of +1 stages, i.e. 

. Each stage  represents the first  
subsystems has been determined. Capacity  de-
notes the total cost of the feasible solutions at each 
stage, i.e. . Let all feasible solu-
tions denoted with a set of states  by, 
 

 
 
where the state  represents all feasible so-
lutions satisfying , i.e. 
 

 

 
. 

 
Let  denote the set of all nondominated 
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solutions corresponding to the subsystem reliabil-
ities  at the state 

. The recursive function of approximate al-
gorithm is given by: 
 

 

 

 

 
 

 
. 

 
4. Experiments and results 
 

Most literatures are focused on P2 and we com-
pare our proposed method with the exact algo-
rithm proposed in (Li & Zhang 2022) on six in-
stances by solving P2 to illustrate its performance. 
The first five instances are classical benchmarks 
used for RAP (Levitin et al., 1998; Levitin et al., 
1997; Lisnianski et al., 1996; Ouzineb et al., 
2008). The last one is a newly generated problem 
with more subsystems connected in series. The 
upper bound  is set by the local optimal solution 
solved by any heuristic method. 
 
4.1. Benchmark 
 

Instance 1 5. The first five instance are lev4-
(4/6)-3 (Levitin et al., 1998), lev5-(4/9)-4 (Levitin 
et al., 1997), lis4-(7/11)-4 (Lisnianski et al., 
1996), mas5-(4/5)-4 (Massim et al., 2005) and 
ouz6-(4/11)-4 (Ouzineb et al., 2008). For the no-
tation xxxa-(b/c)-d, xxx, a, (b/c) and d denote the 
first th , the 
number of subsystems, the range of component 
types, the number of the system demand levels, 
respectively.  
Instance 6. The last one is a new randomly gener-
ated instance with more subsystems and fewer 
component types denoted by zhang10-(3/3)-3. 
 
4.2. Approximated D-RMODP results 
 

We implement the proposed approximate algo-
rithm to six instances. The absolute error  varies 
among 0.1, 0.3 and 0.5. The approximated  
solutions for homogeneous and heterogeneous 

cases are presented in detail in Appendix, where 
Table 5, 6 and 7 give the homogeneous solutions; 
Table 8, 9 and 10 give the heterogeneous solutions 
for ,  and  respectively. 
The approximate results for homogeneous and 
heterogeneous cases are illustrated in Table 1  
and 3. The actual errors between the approximate 
results and the exact solutions for homogeneous 
and heterogeneous cases are illustrated in Table 2  
and 4.  
We observe that the actual error generally in-
creases with the given  increasing. When  

 or 0.3, the approximate algorithm often 
obtains the exact solutions, since the partition 
scale  is not big enough to eliminate the exact 
solutions. When , the actual absolute er-
rors are generally relative smaller compared with 
the given . 
 
Table 1. Approximate results for homogeneous RAP 
 

Instance  
 

0.1 0.3 0.5 

lis4-(7/11)-4 

0.910 14.88615 14.88615 14.88615 
0.920 15.07515 15.07515 15.07515 
0.940 17.80475 17.80475 17.86050 
0.950 20.04875 20.04875 20.10100 
0.960 21.15515 21.15515 21.29450 
0.970 21.90675 21.90675 21.90675 
0.980 22.65625 22.65625 23.00000 
0.990 24.30475 24.30475 24.40700 
0.999 26.95170 26.97310 26.95170 

lev5-(4/9)-4 
0.975 16.450 16.450 16.521 
0.980 16.520 16.562 16.633 
0.990 17.050 17.050 17.166 

lev4-(4/6)-3 
0.900 5.986 5.986 5.986 
0.960 7.303 7.303 7.303 
0.990 8.328 8.328 8.328 

ouz6-(4/11)-4 
0.975 11.197 11.241 11.241 
0.980 11.369 11.369 11.419 
0.990 12.764 12.764 12.764 

mas5-(4/5)-4 
0.975 52.818 52.818 52.818 
0.985 56.112 56.112 56.112 
0.990 59.982 59.982 59.982 

li10-(3/3)-3 

0.985 3.95 3.95 3.95 
0.990 4.09 4.11 4.11 
0.993 4.18 4.18 4.18 
0.998 4.46 4.46 4.46 
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Table 2. Actual errors of approximate results for  
homogeneous RAP 
 

Instance   
0.1 0.3 0.5 

lis4-(7/11)-4 

0.910 0 0 0 
0.920 0 0 0 
0.940 0 0 0.05575 
0.950 0 0 0.05225 
0.960 0 0 0.13935 
0.970 0 0 0 
0.980 0 0 0.10225 
0.990 0 0 0.10225 
0.999 0 0.0214 0 

lev5-(4/9)-4 
0.975 0 0 0.071 
0.980 0 0.1 0.280 
0.990 0 0 0.116 

lev4-(4/6)-3 
0.900 0 0 0 
0.960 0 0 0 
0.990 0 0 0 

ouz6-(4/11)-4 
0.975 0 0.044 0.044 
0.980 0 0 0.050 
0.990 0 0 0 

mas5-(4/5)-4 
0.975 0 0 0 
0.985 0 0 0 
0.990 0 0 0 

li10-(3/3)-3 

0.985 0 0 0 
0.990 0 0.02 0.02 
0.993 0 0 0 
0.998 0 0 0 

 
Table 3. Approximate results for heterogeneous RAP 
 

Instance   
0.1 0.3 0.5 

lis4-(7/11)-4 

0.910 14.88615 14.88615 14.88615 
0.920 15.07515 15.07515 15.07515 
0.940 17.41850 17.41850 17.41850 
0.950 19.86105 19.86105 19.86105 
0.960 20.57040 20.57040 20.57040 
0.970 21.28855 21.28855 21.28855 
0.980 22.56240 22.56240 22.56240 
0.990 23.77875 23.77875 23.83100 
0.999 26.9194 26.9194 26.95170 

lev5-(4/9)-4 
0.975 12.855 12.855 12.912 
0.980 14.755 14.791 14.755 
0.990 15.870 15.870 15.885 

lev4-(4/6)-3 
0.900 5.423 5.423 5.423 
0.960 7.009 7.009 7.060 
0.990 8.180 8.180 8.180 

ouz6-(4/11)-4 
0.975 11.197 11.197 11.241 
0.980 11.369 11.369 11.369 
0.990 12.764 12.764 12.764 

mas5-(4/5)-4 
0.975 52.392 52.392 52.392 
0.985 55.348 55.395 55.348 
0.990 57.032 57.032 57.070 

li10-(3/3)-3 

0.985 - 3.92 3.93 
0.990 - 4.08 4.09 
0.993 - 4.16 4.16 
0.998 - 4.45 4.46 

Table 4. Actual errors of approximate results for  
heterogeneous RAP 
 

Instance   
0.1 0.3 0.5 

lis4-(7/11)-4 

0.910 0 0 0 
0.920 0 0 0 
0.940 0 0 0 
0.950 0 0 0 
0.960 0 0 0 
0.970 0 0 0 
0.980 0 0 0 
0.990 0 0 0.05225 
0.999 0 0 0.03230 

lev5-(4/9)-4 
0.975 0 0 0.057 
0.980 0 0.036 0 
0.990 0 0 0.015 

lev4-(4/6)-3 
0.900 0 0 0 
0.960 0 0 0.051 
0.990 0 0 0 

ouz6-(4/11)-4 
0.975 0 0 0.044 
0.980 0 0 0 
0.990 0 0 0 

mas5-(4/5)-4 
0.975 0 0 0 
0.985 0 0.047 0 
0.990 0 0 0.038 

li10-(3/3)-3 

0.985 - 0 0.010 
0.990 - 0 0.010 
0.993 - 0 0 
0.998 - 0 0.010 

 
5. Conclusion 
 

We consider two types of problems for MSSPS 
RAP: maximization of reliability under the sys-
tem cost restriction and minimization of cost un-
der the system reliability restriction.  
We proposed the approximate approach to solve 
MSSPS RAP under the homogeneous and hetero-
geneous cases. Compared to the exact method 
proposed in (Li & Zhang 2022), the approximate 
algorithm saves both the computational time and 
memory requirements under the give absolute ac-
curacy error.  
The numerical experiments demonstrate the per-
formance of our proposed algorithm. 
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Appendix 
 

Table 5. Optimal solutions of approximated D-MODP 
for homogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.942 17.80475 
0.950 0.952 20.04875 
0.960 0.960 21.15515 
0.970 0.971 21.90675 
0.980 0.982 22.65625 
0.990 0.991 24.30475 
0.999 0.999 26.95170 

lev5-(4/9)-4 
0.975 0.977 16.450 
0.980 0.981 16.520 
0.990 0.994 17.050 

lev4-(4/6)-3 
0.900 0.910 5.986 
0.960 0.961 7.303 
0.990 0.992 8.328 

ouz6-(4/11)-4 
0.975 0.975 11.197 
0.980 0.980 11.369 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.977 52.818 
0.985 0.985 56.112 
0.990 0.990 59.982 

 
Table 5. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
1(5) 7(1) 5(3) 2(5) - - 
1(5) 3(2) 2(5) 2(5) - - 

10(1) 5(3) 2(4) 3(5) - - 
10(1) 3(3) 5(3) 3(5) - - 
10(1) 3(3) 2(3) 2(5) - - 
1(5) 3(3) 5(3) 2(5) - - 
1(6) 3(4) 2(6) 3(6) - - 
2(2) 3(2) 2(3) 7(3) 2(1) - 
2(2) 5(6) 2(3) 7(3) 2(1) - 
2(2) 3(2) 2(3) 7(3) 4(3) - 
4(1) 3(2) 1(3) 5(2) - - 
2(2) 3(3) 1(3) 5(2) - - 
1(3) 3(3) 1(3) 2(5) - - 
3(5) 1(5) 2(4) 2(9) 3(2) 4(1) 
3(4) 1(5) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
3(1) 7(5) 5(4) 4(3) 5(3) - 
3(1) 8(5) 4(2) 4(2) 6(3) - 
5(3) 7(5) 5(4) 4(3) 5(3) - 

 
 

Table 6. Optimal solutions of approximated D-MODP 
for homogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.942 17.80475 
0.950 0.952 20.04875 
0.960 0.960 21.15515 
0.970 0.971 21.90675 
0.980 0.982 22.65625 
0.990 0.991 24.30475 
0.999 0.999 26.97310 

lev5-(4/9)-4 
0.975 0.977 16.450 
0.980 0.981 16.562 
0.990 0.994 17.050 

lev4-(4/6)-3 
0.900 0.910 5.986 
0.960 0.961 7.303 
0.990 0.992 8.328 

ouz6-(4/11)-4 
0.975 0.979 11.241 
0.980 0.980 11.369 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.977 52.818 
0.985 0.985 56.112 
0.990 0.990 59.982 

li10-(3/3)-3 

0.985 0.987 3.95 
0.990 0.991 4.11 
0.993 0.993 4.18 
0.998 0.998 4.46 

 
Table 6. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
1(5) 7(1) 5(3) 2(5) - - 
1(5) 3(2) 2(5) 2(5) - - 

10(1) 5(3) 2(4) 3(5) - - 
10(1) 3(3) 5(3) 3(5) - - 
10(1) 3(3) 2(3) 2(5) - - 
1(5) 3(3) 5(3) 2(5) - - 
1(6) 3(4) 2(5) 3(7) - - 
2(2) 3(2) 2(3) 7(3) 2(1) - 
2(2) 5(7) 2(3) 7(3) 2(1) - 
2(2) 3(2) 2(3) 7(3) 4(3) - 
4(1) 3(2) 1(3) 5(2) - - 
2(2) 3(3) 1(3) 5(2) - - 
1(3) 3(3) 1(3) 2(5) - - 
3(4) 1(4) 2(5) 2(7) 3(2) 4(1) 
3(4) 1(5) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
3(1) 7(5) 5(4) 4(3) 5(3)  
3(1) 8(5) 4(2) 4(2) 6(3)  
5(3) 7(5) 5(4) 4(3) 5(3)  
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Table 7. Optimal solutions of approximated  
D-MODP for homogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.940 17.86050 
0.950 0.952 20.10100 
0.960 0.962 21.29450 
0.970 0.971 21.90675 
0.980 0.982 23.00000 
0.990 0.992 24.40700 
0.999 0.999 26.95170 

lev5-(4/9)-4 
0.975 0.978 16.521 
0.980 0.981 16.633 
0.990 0.995 17.166 

lev4-(4/6)-3 
0.900 0.910 5.986 
0.960 0.961 7.303 
0.990 0.992 8.328 

ouz6-(4/11)-4 
0.975 0.979 11.241 
0.980 0.980 11.419 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.977 52.818 
0.985 0.985 56.112 
0.990 0.990 59.982 

li10-(3/3)-3 

0.985 0.987 3.95 
0.990 0.991 4.11 
0.993 0.993 4.18 
0.998 0.998 4.46 

 
Table 7. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
1(6) 7(1) 2(4) 3(6) - - 
1(5) 3(2) 2(5) 3(6) - - 

10(1) 2(4) 5(3) 3(6) - - 
10(1) 3(3) 5(3) 3(5) - - 
10(1) 7(2) 2(5) 3(6) - - 
1(5) 7(2) 5(3) 3(6) - - 
1(6) 3(4) 2(6) 3(6) - - 
2(2) 3(2) 2(3) 7(4) 2(1) - 
2(2) 5(7) 2(3) 7(4) 2(1) - 
2(2) 3(2) 2(3) 7(4) 3(3) - 
4(1) 3(2) 1(3) 5(2) - - 
2(2) 3(3) 1(3) 5(2) - - 
1(3) 3(3) 1(3) 2(5) - - 
3(4) 1(4) 2(5) 2(7) 3(2) 4(1) 
3(4) 1(6) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
3(1) 7(5) 5(4) 4(3) 5(3)  
3(1) 8(5) 4(2) 4(2) 6(3)  
5(3) 7(5) 5(4) 4(3) 5(3)  

 

Table 8. Optimal solutions of approximated  
D-MODP for heterogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.941 17.41850 
0.950 0.950 19.86105 
0.960 0.961 20.57040 
0.970 0.970 21.28855 
0.980 0.981 22.56240 
0.990 0.990 23.77875 
0.999 0.999 26.9194 

lev5-(4/9)-4 
0.975 0.976 12.855 
0.980 0.980 14.755 
0.990 0.992 15.870 

lev4-(4/6)-3 
0.900 0.900 5.423 
0.960 0.963 7.009 
0.990 0.991 8.180 

ouz6-(4/11)-4 
0.975 0.975 11.197 
0.980 0.980 11.369 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.978 52.392 
0.985 0.985 55.348 
0.990 0.990 57.032 

 
Table 8. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
1(5) 7(1) 2(5) 2(1) 

3(4) 
- - 

1(5) 3(2) 2(5) 2(3) 
3(2) 

- - 

10(1) 2(1) 
5(2) 

2(4)  
 

2(1) 
3(4) 

- - 

10(1) 2(1) 
5(2) 

2(5)  
 

2(3) 
3(2) 

- - 

10(1) 3(3) 2(5)  
 

2(4) 
3(1) 

- - 

1(5) 1(1) 
5(2) 

2(5) 2(5) - - 

1(6)  
 

3(4)  
 

2(5)  
 

2(3) 
3(3) 

- - 

4(2) 
6(1) 

5(6) 1(1) 
4(1) 

7(3)  4(3) - 

4(2) 
6(1)  

3(2)  2(1) 
3(2)  

7(3) 3(1) 
4(2) 

- 

4(2) 
6(1) 

3(2) 2(2) 
3(1) 

7(3) 4(3) - 

4(1) 3(2) 1(3) 3(1) 
5(1) 

- - 

1(3) 2(1) 
3(2) 

1(3) 3(1) 
5(1) 

- - 

1(3) 3(3) 1(3) 3(1) 
4(2) 

- - 
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continuation 
3(5) 1(5) 2(4) 2(9) 3(2) 4(1) 
3(4) 1(5) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
1(3)  3(1) 

5(5) 
4(5) 3(3) 

4(1) 
3(3) 
4(2) 

 

1(1) 
3(3) 

1(2) 
3(1) 
5(1) 

4(5) 3(3) 
4(1) 

3(3) 
4(2) 

 

1(1) 
3(3) 

3(4) 4(5) 2(2) 
3(1) 
4(1) 

3(4) 
4(2) 

 

 
Table 9. Optimal solutions of approximated  
D-MODP for heterogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.941 17.41850 
0.950 0.950 19.86105 
0.960 0.961 20.57040 
0.970 0.970 21.28855 
0.980 0.981 22.56240 
0.990 0.990 23.77875 
0.999 0.999 26.9194 

lev5-(4/9)-4 
0.975 0.976 12.855 
0.980 0.980 14.791 
0.990 0.992 15.870 

lev4-(4/6)-3 
0.900 0.900 5.423 
0.960 0.963 7.009 
0.990 0.991 8.180 

ouz6-(4/11)-4 
0.975 0.975 11.197 
0.980 0.980 11.369 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.978 52.392 
0.985 0.985 55.395 
0.990 0.990 57.032 

 
Table 9. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
1(5) 

 
7(1) 

 
2(5) 

 
2(1) 
3(4) 

- - 

1(5) 
 

3(2) 
 

2(5) 
 

2(3) 
3(2) 

- - 

10(1) 
 

2(1) 
5(2) 

2(4) 
 

2(1) 
3(4) 

- - 

10(1) 
 

2(1) 
5(2) 

2(5) 
 

2(3) 
3(2) 

- - 

10(1) 
 

3(3) 
 

2(5) 
 

2(4) 
3(1) 

- - 

1(5) 
 

1(1) 
5(2) 

2(5) 
 

2(5) 
 

- - 

      

continuation 
1(6) 

 
3(4) 

 
2(5) 

 
2(3) 
3(3) 

- - 

4(2) 
6(1) 

5(6) 
 

1(1) 
4(1) 

7(3) 
 

4(3) 
 - 

4(2) 
6(1) 

3(2) 
 

2(1) 
3(2) 

9(6) 
 

4(3) 
 - 

4(2) 
6(1) 

3(2) 2(2) 
3(1) 

7(3) 4(3) - 

4(1) 3(2) 1(3) 3(1) 
5(1) 

- - 

1(3) 2(1) 
3(2) 

1(3) 3(1) 
5(1) 

- - 

1(3) 3(3) 1(3) 3(1) 
4(2) 

- - 

3(5) 1(5) 2(4) 2(9) 3(2) 4(1) 
3(4) 1(5) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
1(3)  3(1) 

5(5) 
4(5) 3(3) 

4(1) 
3(3) 
4(2) 

 

1(3) 3(1) 
5(6) 

2(3) 
3(1) 

2(3) 
4(1) 

3(4) 
4(2) 

 

1(1) 
3(3) 

3(4) 4(5) 2(2) 
3(1) 
4(1) 

3(4) 
4(2) 

 

 
Table 10. Optimal solutions of approximated  
D-MODP for heterogeneous RAP with  
 

Problem name    

lis4-(7/11)-4 

0.910 0.914 14.88615 
0.920 0.920 15.07515 
0.940 0.941 17.41850 
0.950 0.950 19.86105 
0.960 0.961 20.57040 
0.970 0.970 21.28855 
0.980 0.981 22.56240 
0.990 0.990 23.83100 
0.999 0.999 26.95170 

lev5-(4/9)-4 
0.975 0.976 12.912 
0.980 0.980 14.755 
0.990 0.992 15.885 

lev4-(4/6)-3 
0.900 0.900 5.423 
0.960 0.964 7.060 
0.990 0.991 8.180 

ouz6-(4/11)-4 
0.975 0.979 11.241 
0.980 0.980 11.369 
0.990 0.990 12.764 

mas5-(4/5)-4 
0.975 0.978 52.392 
0.985 0.985 55.348 
0.990 0.990 57.070 

 
Table 10. Continue 
 

Best solution 
1 2 3 4 5 6 

11(1) 7(1) 2(4) 3(5) - - 
10(1) 7(1) 2(4) 3(5) - - 
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continuation 
1(5) 7(1) 2(5) 2(1) 

3(4) 
- - 

1(5) 3(2) 2(5) 2(3) 
3(2) 

- - 

10(1) 2(1) 
5(2) 

2(4)  
 

2(1) 
3(4) 

- - 

10(1) 2(1) 
5(2) 

2(5)  
 

2(3) 
3(2) 

- - 

10(1) 3(3) 2(5)  2(4) 
3(1) 

- - 

1(5) 1(1) 
5(2) 

2(5) 3(6) - - 

1(6) 3(4) 2(6) 3(6) - - 
4(2) 
6(1) 

5(7) 1(1) 
4(1) 

7(3)  3(1) 
4(2) 

- 

4(2) 
6(1)  

3(2)  2(1) 
3(2)  

7(3) 3(1) 
4(2) 

- 

4(2) 
6(1) 

3(2) 2(2) 
3(1) 

7(3) 3(1) 
4(2) 

- 

4(1) 3(2) 1(3) 3(1) 
5(1) 

- - 

1(3) 3(3) 1(3) 3(1) 
5(1) 

- - 

1(3) 3(3) 1(3) 3(1) 
4(2) 

- - 

3(4) 1(4) 2(5) 2(7) 3(2) 4(1) 
3(4) 1(5) 2(5) 2(8) 3(2) 4(1) 
3(4) 1(4) 2(4) 2(8) 3(2) 4(2) 
1(3)  3(1) 

5(5) 
4(5) 3(3) 

4(1) 
3(3) 
4(2) 

 

1(1) 
3(3) 

1(2) 
3(1) 
5(1) 

4(5) 3(3) 
4(1) 

3(3) 
4(2) 

 

1(1) 
3(3) 

3(4) 4(5) 2(3) 
4(1) 

3(4) 
4(2) 
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