Approximate method for redundancy allocation problem in multi-state series-parallel system

Keywords

reliability optimization, redundancy allocation problem, dynamic programming

Abstract

Redundancy allocation problem (RAP) is one of the most important model of reliability optimization problems. In literature, there exist two typical formulations for RAP, namely 1) maximization of the system reliability under the resource constraints and 2) minimization of the system cost under system reliability and resource constraints. We propose an approximate method to solve MSSPS RAP under homogeneous and heterogeneous conditions under an absolute error. Numerical experiments are conducted on five published benchmarks and a new randomly generated instance with a larger number of subsystems. The approximated solutions exhibit good quality throughout the experiments.

1. Introduction

Reliable systems are important to industrial practitioners and engineering. There are generally four methods to improve the system reliability (Coit \& Zio, 2019):
(i) increasing the component reliability,
(ii) paralleling the redundant components,
(iii) combination of (i) and (ii),
(iv) reassignment of interchangeable components.
Redundancy allocation problem (RAP) is an important problem in reliability optimization, which determines both the redundancy levels and select the version (type) of components (Mellal et al., 2020; Wang et al., 2020).
The traditional system structure considered in reliability optimization is the binary-state system (BSS), where the systems have two possible states: perfect working and total failure. However, binary-state assumption cannot completely capture the characteristic of the sophisticated degradation process of engineering component or sys-
tem. By introducing the intermediate states between perfect working state and total failure state, multi-state models reflect the stochastic performance of a system/component in a more accurate way. The system with multi-state degradation is generally considered as a multi-state system (MSS). There are many applications for MSS in different fields, such as gas pipeline system (Bao et al., 2021), wireless sensor system (Yi et al., 2021), distributed generation system (Li \& Zio, 2012), wind energy system (Eryilmaz, 2018) and mineral water production system (Hao et al., 2020). The common system structure considered in MSS is series-parallel system, i.e. multi-state series-parallel system (MSSPS).
The literature about MSSPS RAP in the past 5 years can be classified into the following groups. The first group considered the different redundancy strategies in RAP, such as mixed-strategy of active and cold-standby redundancies (Ardakan et al., 2016), and warm-standby (Levitin et al., 2017). The second group considered optimizing the component reliability joint with RAP
(Ardakan et al., 2016; Muhuri \& Nath, 2019; Ouyang et al., 2019; Zhang et al., 2022). The third group considered the maintenance action of component in RAP (Bei et al., 2017; Bei et al., 2019). The forth group of works considered the epistemic uncertainty of parameters in RAP and used the robust optimization method to deal with it (Zhang \& Li, 2022).
As for the solving method for MSSPS RAP, several heuristic techniques have been proposed, such as GA (Levitin et al., 1998; Levitin et al., 1997), TS (Ouzineb et al., 2008, 2009) and QEA (Li \& Zio, 2014). Li and Zhang (2022) proposed the exact algorithm, RMODP, for MSSPS RAP. The size of the state space influences both the computational time and memory requirements for RMODP algorithm. Therefore, we proposed an approximate algorithm for MSSPS RAP which can improve the computational rate and guarantee the accuracy of the result.
The chapter is structured as follows. Section 2 gives the description of MSSPS RAP and gives the mathematical formulations. Section 3 states the approximate algorithm for MSSPS RAP. In Section 4, experiments are conducted to illustrate the performance of the algorithm. Finally, the conclusion is presented in Section 5.

2. Problem description

2.1. Assumption

We consider MSSPS RAP under the homogeneous and heterogenous cases. In each subsystem, homogeneous means that components mixing is not allowed, and heterogeneous means that the component type can be mixed. Therefore, we have to determine both the number of component and the selection of component type(s). Following are the assumptions we considered in this chapter:

- the components and systems have multiple and finite states,
- the degradation processes of all component are independent,
- the characteristics of the component (reliability, cost) are known.

2.2. Mathematical formulation

MSSPS consists of N subsystems connected in series. Each subsystem is indexed with i and has n_{i} types of multi-state components available. The type of component in subsystem is index with j.

The component with type j in subsystem i is denoted by $U_{i j}$, which is described by their performance $\boldsymbol{g}_{i j}$, unit cost $c_{i j}$, and reliability $\boldsymbol{p}_{i j}$. We assume that the number of component state for multi-state element $U_{i j}$ is $M_{i j}$ and it is index by $m_{i j} . U_{i j}$ has the performance level $g_{i j}^{m_{i j}}$ with probability $p_{i j}^{m_{i j}}$ for $m_{i j}=1, \ldots, M_{i j}$ and $\sum_{m_{i j}} p_{i j}^{m_{i j}}=1$. The decision variables are to determine the number of all components in the system. The number of $U_{i j}$ is denoted by $x_{i j}$ for $i=1, \ldots, N, j=1, \ldots, n_{i}$. Thus, the decision variable can be simplified to $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)$, where $\boldsymbol{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n_{i}}\right)$.
The system demand W is a random discrete variable and equals to W_{l} with the probability p_{l}^{\prime} for $l=1, \ldots, L$. Let G_{i} denote the performance of subsystem i. Then, the reliability of subsystem i is the probability that the subsystem performance meets the system demand and given by $\operatorname{Pr}\left(G_{i} \geq W\right)$. The reliability of MSSPS is calculated by the probability that the system performance meets the system demand. Since the subsystems are connected in series, the reliability is the multiplication of all subsystem reliabilities and given by

$$
\begin{align*}
R(\boldsymbol{x}) & =\prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W\right) \\
& =\sum_{l=1}^{L} p_{l}^{\prime} \prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W_{l}\right) \tag{1}
\end{align*}
$$

The methods to evaluate the reliability of MSSPS include: the universal generating function (UGF) (Ushakov, 1988), the recursive algorithm ($\mathrm{Li} \&$ Zuo, 2008), and the method based on the dynamic programming concept with a pseudo-polynomial time complexity (Sun et al., 2015). In this chapter, we use the dynamic programming method to calculate the system reliability.
According to the form of the objective function, MSSSP RAP can be divided into two types (Kuo \& Wan, 2007): P1) maximization of the system reliability under the resource constraints and P2) minimization of the system cost under system reliability and resource constraints. The mathematical formulations of P1 and P2 are given by (2) and (3).

$$
\begin{array}{rll}
\mathrm{P} 1 \quad \max & \sum_{l=1}^{L} p_{l}^{\prime} \prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W_{l}\right) \\
& \text { s.t. } & \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} c_{i j} x_{i j} \leq C_{0} \\
& \boldsymbol{x}_{\boldsymbol{i}} \in X_{i}, i=1, \ldots, N . \\
\mathrm{P} 2 \min & \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} c_{i j} x_{i j} \leq C_{0} \\
& \text { s.t. } & \sum_{l=1}^{L} p_{l}^{\prime} \prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W_{l}\right) \geq R_{0} \\
& & \boldsymbol{x}_{\boldsymbol{i}} \in X_{i}, i=1, \ldots, N . \tag{3.c}
\end{array}
$$

3. Approximate algorithm

We propose an approximate method based on the exact method, RMODP, proposed in (Li \& Zhang 2022). The size of the state space influences both the computational time and memory requirements for RMODP algorithm. To handle this difficulty, we develop an approximate algorithm with a provable absolute error to solve P2, which can largely reduce the state space and save the computational time.
First, we convert the single objective function (2.a) into multi-objective functions (4.a), each objective function $R_{l}(\boldsymbol{x})$ is corresponding to one demand W_{l}. In this formulation, all objectives are separable with decision variables \boldsymbol{x}_{i}. Thus, P1 is transformed into P3 and then all objectives are logarithmized to the linear forms, i.e. in P4. The objective $\sum_{i=1}^{N} \ln \operatorname{Pr}\left(G_{i} \geq W_{l}\right)$ is simply represented by $\sum_{i=1}^{N} f_{l}\left(\boldsymbol{x}_{i}\right)$ for $l=1, \ldots, L$. The optimal solution of P1 must be included in the set of Pareto optimal solutions of P4. Thus, we solve P4 to obtain the Pareto optimal solutions and select the one which maximizes P1.

$$
\begin{array}{rll}
\text { P3 } & \max & R_{1}(\boldsymbol{x})=\prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W_{1}\right) \tag{4.a}\\
& \vdots \\
& \max & R_{L}(\boldsymbol{x})=\prod_{i=1}^{N} \operatorname{Pr}\left(G_{i} \geq W_{L}\right)
\end{array}
$$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} c_{i j} x_{i j} \leq C_{0} \\
& \boldsymbol{x}_{\boldsymbol{i}} \in X_{i}, i=1, \ldots, N . \tag{4.c}\\
& \sum_{i=1}^{N} \ln \operatorname{Pr}\left(G_{i} \geq W_{1}\right)
\end{array}
$$

P4 max
\max

$$
\begin{array}{ll}
& \triangleq \sum_{i=1}^{N} f_{L}\left(\boldsymbol{x}_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} c_{i j} x_{i j} \leq C_{0} \\
& \boldsymbol{x}_{\boldsymbol{i}} \in X_{i}, i=1, \ldots, N . \tag{5.c}
\end{array}
$$

For a given accuracy $\varepsilon>0$, the capacity state is partitioned into several intervals. Then, we adapt the RMODP to the partitioned capacity space. The DP-procedure consists of $N+1$ stages, i.e. $k=0,1, \ldots, N$. Each stage k represents the first k subsystems has been determined. Capacity b denotes the total cost of the feasible solutions at each stage, i.e. $b=0,1, \ldots, C_{0}$. Let all feasible solutions denoted with a set of states Q by,
$Q:=\left\{q(b, k): b=0,1, \ldots, C_{0}, k=0,1, \ldots, N\right\}$
where the state $q(b, k)$ represents all feasible solutions satisfying $\sum_{i=1}^{k} \boldsymbol{c}_{i} \boldsymbol{x}_{i}=b$, i.e.

$$
\begin{aligned}
q(b, k) & :=\left\{\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right): \sum_{i=1}^{k} \boldsymbol{c}_{i} \boldsymbol{x}_{i}\right. \\
& \left.=b, \boldsymbol{x}_{k+1}, \ldots, \boldsymbol{x}_{N}=0, \boldsymbol{x}_{i} \in X_{i}\right\} .
\end{aligned}
$$

Let $G(q(b, k))$ denote the set of all nondominated
solutions corresponding to the subsystem reliabilities $\left(\sum_{i=1}^{k} f_{1}\left(\boldsymbol{x}_{i}\right), \ldots, \sum_{i=1}^{k} f_{L}\left(\boldsymbol{x}_{i}\right)\right)^{T}$ at the state $q(b, k)$. The recursive function of approximate algorithm is given by:

$$
\begin{aligned}
& \left\{\begin{array}{l}
G(q(b, 0))=\{\boldsymbol{0}\} \\
G(q(b, k))=v \max \left\{G\left(q\left(b-\boldsymbol{c}_{k} \boldsymbol{x}_{k}, k-1\right)\right)\right.
\end{array}\right. \\
& G\left(q\left(b-\boldsymbol{c}_{k} \boldsymbol{x}_{k}, k-1\right)\right)+\left(\begin{array}{c}
f_{1}\left(\boldsymbol{x}_{k}\right) \\
\vdots \\
f_{L}\left(\boldsymbol{x}_{k}\right)
\end{array}\right) \\
& \left.\boldsymbol{x}_{k} \in X_{k}^{\text {HOMO }}, b-\boldsymbol{c}_{k} \boldsymbol{x}_{k} \geq 0\right\} \\
& b=0,1, \ldots, C_{0}, k=1, \ldots, N .
\end{aligned}
$$

4. Experiments and results

Most literatures are focused on P2 and we compare our proposed method with the exact algorithm proposed in (Li \& Zhang 2022) on six instances by solving P2 to illustrate its performance. The first five instances are classical benchmarks used for RAP (Levitin et al., 1998; Levitin et al., 1997; Lisnianski et al., 1996; Ouzineb et al., 2008). The last one is a newly generated problem with more subsystems connected in series. The upper bound \tilde{c} is set by the local optimal solution solved by any heuristic method.

4.1. Benchmark

Instance 1-5. The first five instance are lev4-(4/6)-3 (Levitin et al., 1998), lev5-(4/9)-4 (Levitin et al., 1997), lis4-(7/11)-4 (Lisnianski et al., 1996), mas5-(4/5)-4 (Massim et al., 2005) and ouz6-(4/11)-4 (Ouzineb et al., 2008). For the notation xxxa-(b/c)-d, xxx, a, (b/c) and d denote the first three characters of the first author's name, the number of subsystems, the range of component types, the number of the system demand levels, respectively.
Instance 6. The last one is a new randomly generated instance with more subsystems and fewer component types denoted by zhang10-(3/3)-3.

4.2. Approximated D-RMODP results

We implement the proposed approximate algorithm to six instances. The absolute error ε varies among $0.1,0.3$ and 0.5 . The approximated solutions for homogeneous and heterogeneous
cases are presented in detail in Appendix, where Table 5, 6 and 7 give the homogeneous solutions; Table 8, 9 and 10 give the heterogeneous solutions for $\varepsilon=0.1, \varepsilon=0.3$ and $\varepsilon=0.5$ respectively. The approximate results for homogeneous and heterogeneous cases are illustrated in Table 1 and 3. The actual errors between the approximate results and the exact solutions for homogeneous and heterogeneous cases are illustrated in Table 2 and 4.
We observe that the actual error generally increases with the given ε increasing. When $\varepsilon=0.1$ or 0.3 , the approximate algorithm often obtains the exact solutions, since the partition scale A is not big enough to eliminate the exact solutions. When $\varepsilon=0.5$, the actual absolute errors are generally relative smaller compared with the given ε.

Table 1. Approximate results for homogeneous RAP

Instance	R_{0}	ε		
		0.1	0.3	0.5
	0.910	14.88615	14.88615	14.88615
	0.920	15.07515	15.07515	15.07515
	0.940	17.80475	17.80475	17.86050
	0.950	20.04875	20.04875	20.10100
lis4-(7/11)-4	0.960	21.15515	21.15515	21.29450
	0.970	21.90675	21.90675	21.90675
	0.980	22.65625	22.65625	23.00000
	0.990	24.30475	24.30475	24.40700
	0.999	26.95170	26.97310	26.95170
	0.975	16.450	16.450	16.521
lev5-(4/9)-4	0.980	16.520	16.562	16.633
	0.990	17.050	17.050	17.166
	0.900	5.986	5.986	5.986
lev4-(4/6)-3	0.960	7.303	7.303	7.303
	0.990	8.328	8.328	8.328
	0.975	11.197	11.241	11.241
ouz6-(4/11)-4	0.980	11.369	11.369	11.419
	0.990	12.764	12.764	12.764
	0.975	52.818	52.818	52.818
mas5-(4/5)-4	0.985	56.112	56.112	56.112
	0.990	59.982	59.982	59.982
	0.985	3.95	3.95	3.95
li10-(3/3)-3	0.990	4.09	4.11	4.11
	0.993	4.18	4.18	4.18
	0.998	4.46	4.46	4.46

Table 2. Actual errors of approximate results for homogeneous RAP

Instance	R_{0}	ε			
	0.910	0.1	0	0.3	
	0.920	0	0	0.5	
	0.940	0	0	0.05575	
lis4-(7/11)-4	0.950	0	0	0.05225	
	0.960	0	0	0.13935	
	0.970	0	0	0	
	0.980	0	0	0.10225	
	0.990	0	0	0.10225	
	0.999	0	0.0214	0	
	0.975	0	0	0.071	
lev5-(4/9)-4	0.980	0	0.1	0.280	
	0.990	0	0	0.116	
	0.900	0	0	0	
lev4-(4/6)-3	0.960	0	0	0	
	0.990	0	0	0	
	0.975	0	0.044	0.044	
ouz6-(4/11)-4	0.980	0	0	0.050	
	0.990	0	0	0	
	0.975	0	0	0	
mas5-(4/5)-4	0.985	0	0	0	
	0.990	0	0	0	
	0.985	0	0	0	
li10-(3/3)-3	0.990	0	0.02	0.02	
	0.993	0	0	0	
	0.998	0	0	0	

Table 3. Approximate results for heterogeneous RAP

Instance	R_{0}	ε		
	0.910	14.88615	14.88615	14.88615
	0.920	15.07515	15.07515	15.07515
	0.940	17.41850	17.41850	17.41850
	0.950	19.86105	19.86105	19.86105
lis4-(7/11)-4	0.960	20.57040	20.57040	20.57040
	0.970	21.28855	21.28855	21.28855
	0.980	22.56240	22.56240	22.56240
	0.990	23.77875	23.77875	23.83100
	0.999	26.9194	26.9194	26.95170
	0.975	12.855	12.855	12.912
lev5-(4/9)-4	0.980	14.755	14.791	14.755
	0.990	15.870	15.870	15.885
	0.900	5.423	5.423	5.423
lev4-(4/6)-3	0.960	7.009	7.009	7.060
	0.990	8.180	8.180	8.180
	0.975	11.197	11.197	11.241
ouz6-(4/11)-4	0.980	11.369	11.369	11.369
	0.990	12.764	12.764	12.764
	0.975	52.392	52.392	52.392
mas5-(4/5)-4	0.985	55.348	55.395	55.348
	0.990	57.032	57.032	57.070
	0.985	-	3.92	3.93
li10-(3/3)-3	0.990	-	4.08	4.09
	0.993	-	4.16	4.16
	0.998	-	4.45	4.46

Table 4. Actual errors of approximate results for heterogeneous RAP

Instance	R_{0}	ε		
		0.1	0.3	0.5
		0	0	0
	0.940	0	0	0
lis4-(7/11)-4	0.950	0	0	0
	0.960	0	0	0
	0.970	0	0	0
	0.980	0	0	0
	0.990	0	0	0.05225
	0.999	0	0	0.03230
	0.975	0	0	0.057
lev5-(4/9)-4	0.980	0	0.036	0
	0.990	0	0	0.015
	0.900	0	0	0
lev4-(4/6)-3	0.960	0	0	0.051
	0.990	0	0	0
	0.975	0	0	0.044
ouz6-(4/11)-4	0.980	0	0	0
	0.990	0	0	0
	0.975	0	0	0
mas5-(4/5)-4	0.985	0	0.047	0
	0.990	0	0	0.038
	0.985	-	0	0.010
li10-(3/3)-3	0.990	-	0	0.010
	0.993	-	0	0
	0.998	-	0	0.010

5. Conclusion

We consider two types of problems for MSSPS RAP: maximization of reliability under the system cost restriction and minimization of cost under the system reliability restriction.
We proposed the approximate approach to solve MSSPS RAP under the homogeneous and heterogeneous cases. Compared to the exact method proposed in (Li \& Zhang 2022), the approximate algorithm saves both the computational time and memory requirements under the give absolute accuracy error.
The numerical experiments demonstrate the performance of our proposed algorithm.

Acknowledgment

The authors thank the anonymous referees for their valuable suggestions that significantly improved this chapter.

Appendix

Table 5. Optimal solutions of approximated D-MODP for homogeneous RAP with $\varepsilon=0.1$

Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$
	0.910	0.914	14.88615
	0.920	0.920	15.07515
	0.940	0.942	17.80475
lis4-(7/11)-4	0.950	0.952	20.04875
	0.960	0.960	21.15515
	0.970	0.971	21.90675
	0.980	0.982	22.65625
	0.990	0.991	24.30475
	0.999	0.999	26.95170
	0.975	0.977	16.450
lev5-(4/9)-4	0.980	0.981	16.520
	0.990	0.994	17.050
	0.900	0.910	5.986
lev4-(4/6)-3	0.960	0.961	7.303
	0.990	0.992	8.328
	0.975	0.975	11.197
ouz6-(4/11)-4	0.980	0.980	11.369
	0.990	0.990	12.764
	0.975	0.977	52.818
mas5-(4/5)-4	0.985	0.985	56.112
	0.990	0.990	59.982

Table 5. Continue

Best solution					
1	2	3	4	5	6
$11(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$10(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$1(5)$	$7(1)$	$5(3)$	$2(5)$	-	-
$1(5)$	$3(2)$	$2(5)$	$2(5)$	-	-
$10(1)$	$5(3)$	$2(4)$	$3(5)$	-	-
$10(1)$	$3(3)$	$5(3)$	$3(5)$	-	-
$10(1)$	$3(3)$	$2(3)$	$2(5)$	-	-
$1(5)$	$3(3)$	$5(3)$	$2(5)$	-	-
$1(6)$	$3(4)$	$2(6)$	$3(6)$	-	-
$2(2)$	$3(2)$	$2(3)$	$7(3)$	$2(1)$	-
$2(2)$	$5(6)$	$2(3)$	$7(3)$	$2(1)$	-
$2(2)$	$3(2)$	$2(3)$	$7(3)$	$4(3)$	-
$4(1)$	$3(2)$	$1(3)$	$5(2)$	-	-
$2(2)$	$3(3)$	$1(3)$	$5(2)$	-	-
$1(3)$	$3(3)$	$1(3)$	$2(5)$	-	-
$3(5)$	$1(5)$	$2(4)$	$2(9)$	$3(2)$	$4(1)$
$3(4)$	$1(5)$	$2(5)$	$2(8)$	$3(2)$	$4(1)$
$3(4)$	$1(4)$	$2(4)$	$2(8)$	$3(2)$	$4(2)$
$3(1)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	-
$3(1)$	$8(5)$	$4(2)$	$4(2)$	$6(3)$	-
$5(3)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	-

Table 6. Optimal solutions of approximated D-MODP for homogeneous RAP with $\varepsilon=0.3$

Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$
	0.910	0.914	14.88615
	0.920	0.920	15.07515
lis4-(7/11)-4	0.940	0.942	17.80475
	0.950	0.952	20.04875
	0.960	0.960	21.15515
	0.970	0.971	21.90675
	0.980	0.982	22.65625
	0.990	0.991	24.30475
	0.999	0.999	26.97310
	0.975	0.977	16.450
lev5-(4/9)-4	0.980	0.981	16.562
	0.990	0.994	17.050
	0.900	0.910	5.986
lev4-(4/6)-3	0.960	0.961	7.303
	0.990	0.992	8.328
	0.975	0.979	11.241
	0.980	0.980	11.369
	0.990	0.990	12.764
	0.975	0.977	52.818
mas5-(4/5)-4	0.985	0.985	56.112
	0.990	0.990	59.982
	0.985	0.987	3.95
li10-(3/3)-3	0.990	0.991	4.11
	0.993	0.993	4.18
	0.998	0.998	4.46

Table 6. Continue

Best solution					
1	2	3	4	5	6
$11(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$10(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$1(5)$	$7(1)$	$5(3)$	$2(5)$	-	-
$1(5)$	$3(2)$	$2(5)$	$2(5)$	-	-
$10(1)$	$5(3)$	$2(4)$	$3(5)$	-	-
$10(1)$	$3(3)$	$5(3)$	$3(5)$	-	-
$10(1)$	$3(3)$	$2(3)$	$2(5)$	-	-
$1(5)$	$3(3)$	$5(3)$	$2(5)$	-	-
$1(6)$	$3(4)$	$2(5)$	$3(7)$	-	-
$2(2)$	$3(2)$	$2(3)$	$7(3)$	$2(1)$	-
$2(2)$	$5(7)$	$2(3)$	$7(3)$	$2(1)$	-
$2(2)$	$3(2)$	$2(3)$	$7(3)$	$4(3)$	-
$4(1)$	$3(2)$	$1(3)$	$5(2)$	-	-
$2(2)$	$3(3)$	$1(3)$	$5(2)$	-	-
$1(3)$	$3(3)$	$1(3)$	$2(5)$	-	-
$3(4)$	$1(4)$	$2(5)$	$2(7)$	$3(2)$	$4(1)$
$3(4)$	$1(5)$	$2(5)$	$2(8)$	$3(2)$	$4(1)$
$3(4)$	$1(4)$	$2(4)$	$2(8)$	$3(2)$	$4(2)$
$3(1)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	
$3(1)$	$8(5)$	$4(2)$	$4(2)$	$6(3)$	
$5(3)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	

Table 7. Optimal solutions of approximated
D-MODP for homogeneous RAP with $\varepsilon=0.5$

Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$
	0.910	0.914	14.88615
	0.920	0.920	15.07515
lis4-(7/11)-4	0.940	0.940	17.86050
	0.950	0.952	20.10100
	0.960	0.962	21.29450
	0.970	0.971	21.90675
	0.980	0.982	23.00000
	0.990	0.992	24.40700
	0.999	0.999	26.95170
	0.975	0.978	16.521
lev5-(4/9)-4	0.980	0.981	16.633
	0.990	0.995	17.166
	0.900	0.910	5.986
	0.960	0.961	7.303
	0.990	0.992	8.328
	0.975	0.979	11.241
	0.980	0.980	11.419
	0.990	0.990	12.764
	0.975	0.977	52.818
mas5-(4/6)-3/5)-4	0.985	0.985	56.112
	0.990	0.990	59.982
	0.985	0.987	3.95
li110-(3/3)-3	0.990	0.991	4.11
	0.993	0.993	4.18
	0.998	0.998	4.46

Table 7. Continue

Best solution					
1	2	3	4	5	6
$11(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$10(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$1(6)$	$7(1)$	$2(4)$	$3(6)$	-	-
$1(5)$	$3(2)$	$2(5)$	$3(6)$	-	-
$10(1)$	$2(4)$	$5(3)$	$3(6)$	-	-
$10(1)$	$3(3)$	$5(3)$	$3(5)$	-	-
$10(1)$	$7(2)$	$2(5)$	$3(6)$	-	-
$1(5)$	$7(2)$	$5(3)$	$3(6)$	-	-
$1(6)$	$3(4)$	$2(6)$	$3(6)$	-	-
$2(2)$	$3(2)$	$2(3)$	$7(4)$	$2(1)$	-
$2(2)$	$5(7)$	$2(3)$	$7(4)$	$2(1)$	-
$2(2)$	$3(2)$	$2(3)$	$7(4)$	$3(3)$	-
$4(1)$	$3(2)$	$1(3)$	$5(2)$	-	-
$2(2)$	$3(3)$	$1(3)$	$5(2)$	-	-
$1(3)$	$3(3)$	$1(3)$	$2(5)$	-	-
$3(4)$	$1(4)$	$2(5)$	$2(7)$	$3(2)$	$4(1)$
$3(4)$	$1(6)$	$2(5)$	$2(8)$	$3(2)$	$4(1)$
$3(4)$	$1(4)$	$2(4)$	$2(8)$	$3(2)$	$4(2)$
$3(1)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	
$3(1)$	$8(5)$	$4(2)$	$4(2)$	$6(3)$	
$5(3)$	$7(5)$	$5(4)$	$4(3)$	$5(3)$	

Table 8. Optimal solutions of approximated D-MODP for heterogeneous RAP with $\varepsilon=0.1$

Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$
	0.910	0.914	14.88615
	0.920	0.920	15.07515
	0.940	0.941	17.41850
lis4-(7/11)-4	0.950	0.950	19.86105
	0.960	0.961	20.57040
	0.970	0.970	21.28855
	0.980	0.981	22.56240
	0.990	0.990	23.77875
	0.999	0.999	26.9194
	0.975	0.976	12.855
lev5-(4/9)-4	0.980	0.980	14.755
	0.990	0.992	15.870
	0.900	0.900	5.423
lev4-(4/6)-3	0.960	0.963	7.009
	0.990	0.991	8.180
	0.975	0.975	11.197
ouz6-(4/11)-4	0.980	0.980	11.369
	0.990	0.990	12.764
	0.975	0.978	52.392
mas5-(4/5)-4	0.985	0.985	55.348
	0.990	0.990	57.032

Table 8. Continue

Best solution					
1	2	3	4	5	6
$11(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$10(1)$	$7(1)$	$2(4)$	$3(5)$	-	-
$1(5)$	$7(1)$	$2(5)$	$2(1)$	-	-
			$3(4)$		-
$1(5)$	$3(2)$	$2(5)$	$2(3)$	-	-
			$3(2)$		-
$10(1)$	$2(1)$	$2(4)$	$2(1)$	-	-
	$5(2)$		$3(4)$		-
$10(1)$	$2(1)$	$2(5)$	$2(3)$	-	-
	$5(2)$		$3(2)$		-
$10(1)$	$3(3)$	$2(5)$	$2(4)$	-	-
			$3(1)$		-
$1(5)$	$1(1)$	$2(5)$	$2(5)$	-	-
	$5(2)$				-
$1(6)$	$3(4)$	$2(5)$	$2(3)$	-	-
			$3(3)$		
$4(2)$	$5(6)$	$1(1)$	$7(3)$	$4(3)$	-
$6(1)$		$4(1)$			
$4(2)$	$3(2)$	$2(1)$	$7(3)$	$3(1)$	-
$6(1)$		$3(2)$		$4(2)$	-
$4(2)$	$3(2)$	$2(2)$	$7(3)$	$4(3)$	-
$6(1)$		$3(1)$			
$4(1)$	$3(2)$	$1(3)$	$3(1)$	-	-
$1(3)$	$2(1)$	$1(3)$	$3(1)$		-
	$3(2)$		$5(1)$	-	-
$1(3)$	$3(3)$	$1(3)$	$3(1)$	-	-
			$4(2)$		

continuation				continuation						
$3(5) \quad 1(5)$	2(4)	2(9)	3(2) 4(1)	1(6)	3(4)	2(5)	2(3)	-	-	
$3(4) \quad 1(5)$	2(5)	2(8)	3(2) 4(1)				3(3)			
$3(4) \quad 1(4)$	2(4)	2(8)	3(2) 4(2)	4(2)	5(6)	1(1)	7(3)	4(3)	-	
1(3) $3(1)$	4(5)	3(3)	3(3)	6(1)		4(1)		4(3)		
		4(1)	4(2)	4(2)	3(2)	2(1)	9(6)		-	
$1(1) \quad 1(2)$	4(5)	3(3)	3(3)	6(1)		$3(2)$		4(3)	-	
$3(3) \quad 3(1)$		4(1)	4(2)	$\begin{aligned} & 4(2) \\ & 6(1) \end{aligned}$	3(2)	2(2)	7(3)			
						3(1)				
$1(1)$$3(3)$	4(5)	2(2)	$3(4)$	4(1)	3(2)	1(3)	3(1)	-	-	
		3(1)	$4(2)$			1(3)	5(1)			
		4(1)		1(3)	2(1)		3(1)	-	-	
					3(2)		5(1)			
Table 9. Optimal solutions of approximated							3(1)	-	-	
							4(2)			
D-MODP for heterogeneous RAP with $\varepsilon=0.3$				3(5)	1(5)	2(4)	2(9)	3(2)	4(1)$4(1)$	
				3(4)	1(5)	2(5)	2(8)	3(2)		
Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$	$\begin{aligned} & 3(4) \\ & 1(3) \end{aligned}$	1(4)	2(4)	2(8)	3(2)	4(2)	
	0.910	0.914	14.88615		$3(1)$ $5(5)$	4(5)	3(3)	$3(3)$		
	0.920	0.920	15.07515	1(3)	$\begin{aligned} & 3(1) \\ & 5(6) \end{aligned}$	$\begin{aligned} & 2(3) \\ & 3(1) \end{aligned}$	2(3)	3(4)		
	0.940	0.941	17.41850				4(1)	4(2)		
	0.950	0.950	19.86105	$\begin{aligned} & 1(1) \\ & 3(3) \end{aligned}$	3(4)	4(5)	2(2)	3(4)		
lis4-(7/11)-4	0.960	0.961	$\begin{aligned} & 20.57040 \\ & 21.28855 \end{aligned}$				3(1)	4(2)		
	0.970	0.970	21.28855				4(1)			

Table 10. Optimal solutions of approximated
D-MODP for heterogeneous RAP with $\varepsilon=0.5$

Problem name	R_{0}	$R(\boldsymbol{x})$	$C(\boldsymbol{x})$
	0.910	0.914	14.88615
	0.920	0.920	15.07515
	0.940	0.941	17.41850
lis4-(7/11)-4	0.950	0.950	19.86105
	0.960	0.961	20.57040
	0.970	0.970	21.28855
	0.980	0.981	22.56240
	0.990	0.990	23.83100
	0.999	0.999	26.95170
	0.975	0.976	12.912
lev5-(4/9)-4	0.980	0.980	14.755
	0.990	0.992	15.885
	0.900	0.900	5.423
lev4-(4/6)-3	0.960	0.964	7.060
	0.990	0.991	8.180
	0.975	0.979	11.241
ouz6-(4/11)-4	0.980	0.980	11.369
	0.990	0.990	12.764
	0.975	0.978	52.392
mas5-(4/5)-4	0.985	0.985	55.348
	0.990	0.990	57.070

Table 10. Continue

Best solution						
1	2	3	4	5	6	
$11(1)$	$7(1)$	$2(4)$	$3(5)$	-	-	
$10(1)$	$7(1)$	$2(4)$	$3(5)$	-	-	

continuation					
1(5)	7(1)	2(5)	2(1)	-	-
			3(4)		
1(5)	3(2)	2(5)	2(3)	-	-
			3(2)		
10(1)	2(1)	2(4)	2(1)	-	-
	5(2)		3(4)		
10(1)	2(1)	2(5)	2(3)	-	-
	5(2)		3(2)		
10(1)	3(3)	2(5)	2(4)	-	-
			3(1)		
1(5)	1(1)	2(5)	3(6)	-	-
	5(2)				
1(6)	3(4)	2(6)	3(6)	-	-
4(2)	5(7)	1(1)	7(3)	3(1)	-
6 (1)		4(1)		4(2)	
4(2)	3(2)	2(1)	7(3)	3(1)	-
6 (1)		3(2)		4(2)	
4(2)	3(2)	2(2)	7(3)	3(1)	-
6 (1)		3(1)		4(2)	
4(1)	3(2)	1(3)	3(1)	-	-
			5(1)		
1(3)	3(3)	1(3)	3(1)	-	-
			5(1)		
1(3)	3(3)	1(3)	3(1)	${ }^{-}$	${ }^{-}$
			4(2)		
3(4)	1(4)	2(5)	2(7)	3(2)	4(1)
3(4)	1(5)	2(5)	2(8)	3(2)	4(1)
3(4)	1(4)	2(4)	2(8)	3(2)	4(2)
1(3)	3(1)	4(5)	3(3)	3(3)	
	5(5)		4(1)	4(2)	
1(1)	1(2)	4(5)	3(3)	3(3)	
3(3)	3(1)		4(1)	4(2)	
	5(1)				
1(1)	3(4)	4(5)	2(3)	3(4)	
3(3)			4(1)	4(2)	

References

Ardakan, M.A., Sima, M., Hamadani, A.Z. \& Coit, D.W. 2016. A novel strategy for redundant components in reliability-redundancy allocation problems. Iie Transactions 48(11), 1043-1057.
Bao, M. L., Ding, Y., Yin, X.H., Shao, C.Z. \& Ye, C.J. 2021. Definitions and reliability evaluation of multi-state systems considering state transition process and its application for gas systems. Reliability Engineering \& System Safety 207.
Bei, X.Q., Chatwattanasiri, N., Coit, D.W. \& Zhu, X.Y. 2017. Combined redundancy allocation and maintenance planning using a two-stage stochastic programming model for multiple component systems. IEEE Transactions on Reliability 66(3), 950-962.
Bei, X.Q., Zhu, X.Y. \& Coit, D.W. 2019. A riskaverse stochastic program for integrated system design and preventive maintenance planning.

European Journal of Operational Research 276(2), 536-548.
Coit, D.W. \& Zio, E. 2019. The evolution of system reliability optimization. Reliability Engineering \& System Safety 192.
Eryilmaz, S. 2018. Reliability analysis of multistate system with three-state components and its application to wind energy. Reliability Engineering \& System Safety 172, 58-63.
Hao, Z.F., Yeh, W.C., Zuo, M. \& Wang, J. 2020. Multi-distribution multi-commodity multistate flow network model and its reliability evaluation algorithm. Reliability Engineering \& System Safety 193.
Kuo, W. \& Wan, R. 2007. Recent advances in optimal reliability allocation. IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans 37(2), 143-156.
Levitin, G., Lisnianski, A., Ben-Haim, H. \& Elmakis, D. 1998. Redundancy optimization for series-parallel multi state systems. IEEE Transactions on Reliability 47(2), 165-172.
Levitin, G., Lisnianski, A. \& Elmakis, D. 1997. Structure optimization of power system with different redundant elements. Electric Power Systems Research 43(1), 19-27.
Levitin, G., Xing, L.D. \& Dai, Y.S. 2017. Optimization of component allocation/distribution and sequencing in warm standby series-parallel systems. IEEE Transactions on Reliability 66(4), 980-988.
Li, W. \& Zuo, M.J. 2008. Reliability evaluation of multi-state weighted k-out-of- n systems. Reliability Engineering \& System Safety 93(1), 160-167.
Li, Y.F. \& Zhang, H.X. 2022. The methods for exactly solving redundancy allocation optimization for multi-state series-parallel systems. Reliability Engineering \& System Safety 221.
Li, Y.F. \& Zio, E. 2012. A multi-state model for the reliability assessment of a distributed generation system via universal generating function. Reliability Engineering \& System Safety 106, 28-36.
Li, Y.F. \& Zio, E. 2014. A quantum-inspired evolutionary approach for non-homogeneous redundancy allocation in series-parallel multistate systems. $10^{\text {th }}$ International Conference on Reliability, Maintainability and Safety (ICRMS). Chinese Institute of Electronics, Guangzhou, China, 526-532.

Lisnianski, A., Levitin, G., BenHaim, H. \& Elmakis, D. 1996. Power system structure optimization subject to reliability constraints. Electric Power Systems Research 39(2), 145-152.
Massim, Y., Zeblah, A., Meziane, R., Benguediab, M. \& Ghouraf, A. 2005. Optimal design and reliability evaluation of multi-state series-parallel power systems. Nonlinear Dynamics 40(4), 309-321.
Mellal, M.A., Al-Dahidi, S. \& Williams, E.J. 2020. System reliability optimization with heterogeneous components using hosted cuckoo optimization algorithm. Reliability Engineering \& System Safety 203, 107110.
Muhuri, P.K. \& Nath, R. 2019. A novel evolutionary algorithmic solution approach for bilevel re-liability-redundancy allocation problem. Reliability Engineering \& System Safety 191, 106531.
Ouyang, Z.Y., Liu, Y., Ruan, S.J. \& Jiang, T. 2019. An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and tor heterogeneous components. Reliability Engineering \& System Safety 181, 62-74.
Ouzineb, M., Nourelfath, M. \& Gendreau, M. 2008. Tabu search for the redundancy allocation problem of homogenous series-parallel multistate systems. Reliability Engineering \& System Safety 93(8), 1257-1272.
Ouzineb, M., Nourelfath, M. \& Gendreau, M. 2009. A heuristic method for non-homogeneous redundancy optimization of series-parallel multi-state systems. Journal of Heuristics 17(1), 1-22.
Sun, M., Li, Y.-F. \& Zio, E. 2015. A dynamic programming algorithm for multi-state series parallel system availability evaluation. $9^{\text {th }}$ International Conference on Mathematical Methods in Reliability 1-8.
Ushakov, I.A. 1988. Reliability analysis of multistate systems by means of a modified generating function. Journal of Information Processing and Cybernetics 24(3), 131-135.
Wang, S.M., Li, Y.F. \& Jia, T. 2020. Distributionally robust design for redundancy allocation. Informs Journal on Computing 32(3), 620-640.
Yi, H., Cui, L.R. \& Balakrishnan, N. 2021. Computation of survival signatures for multi-state consecutive-k systems. Reliability Engineering \& System Safety 208.
Zhang, H., Sun, M. \& Li, Y.-F. 2022. Reliabilityredundancy allocation problem in multi-state
flow network: Minimal cut-based approximation scheme. Reliability Engineering \& System Safety.
Zhang, H. X. \& Li, Y.F. 2022. Robust optimization on redundancy allocation problems in multi-state and continuous-state series-parallel systems. Reliability Engineering \& System Safety 218.

