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Abstract 
 

The chapter discusses the performance aspects of intelligent agents in Complex Event Processing (CEP) 
systems. The contemporary solution for implementing CEP systems is based on available software com-
ponents (Siddhi) and modern implementation techniques (Kubernetes). However, Siddhi lacks the im-
plementation of modern deep learning algorithms. Hence, the concept of intelligent agent is introduced. 
A case study with a set of intelligent agents designed to handle real-world events related to environmen-
tal data monitoring is presented. The results of the case study discussion indicate a reasonable scale for 
tuning the Event Processing Element (EPA) topology with correct responses and the required output 
performance level. These results have important implications for the practical implementation of the 
EPA structure, i.e., the use of GPUs in CEP systems. Finally, the results of performance analysis of 
different implementations of intelligent agents are presented and discussed. 
 
1. Introduction 
 

The operation of various modern security moni-
toring systems is based on real time processing of 
stream of events coming from the environment. 
The functionality that the system must provide 
can be defined as detecting some specific tem-
poral and semantic patterns in the stream of 
events, and then evaluating their various charac-
teristics and generating appropriate responses be-
cause of their classification. It implies the usage 
of modern machine learning method as an intelli-
gent element of the system. An event processing 
system forms a complex network of agents that 
process events and communicate with each other 
by sending generated event messages.  

The ability to provide responses in a desired time 
frame and the ability to handle large, cumulative 
workloads (Sugier et al., 2019) is an important as-
pect of an event processing system, especially in 
the field of security monitoring of the environ-
ment characterized by different sources of events 
with various parameters. 
Within this chapter the authors discus perfor-
mance aspects of intelligent agents within Com-
plex Event Processing (CEP) systems. The chap-
ter is structured as follows. Firstly, we present  
the actual methods of deploying CEP systems. 
Next, we define the intelligent agent problem and  
the idea of CEP system creation using them.  
Section 4 presents the case study with the set of 
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intelligent agents dedicated to real events caused 
the environmental data monitoring. Finally, per-
formance analysis results are presented and dis-
cussed based on the working point of the system 
fixed by case study description. 
 
2. Complex event processing system  

deployment 
 

There are well-known methods and software en-
vironments for data streaming that can be useful 
for agent-to-agent dialogue in CEP systems. Sid-
dhi is a native streaming and complex event pro-
cessing engine in the cloud that understands 
streaming SQL queries to capture events from 
various data sources, process them, detect com-
plex conditions, and publish the output to various 
endpoints in real-time. Siddhi is an event-driven 
system in which all the data it fetches, processes, 
and sends is modeled as events. Therefore, Siddhi 
can play an important role in any event-driven ar-
chitecture. This software provides analytics oper-
ators to manage data flow, compute analytics re-
sults, and detect patterns on event data from a 
wide variety of live data sources, enabling devel-
opers to create applications that sense, think, and 
act in real time. So, we can create a type of pro-
cessing where incoming event data is distilled 
down to more useful, higher-level complex event 
data that provides insight into what is happening. 
The computation is triggered by the reception of 
event data. They are used in highly demanding 
continuous intelligence applications that increase 
situational awareness and support real-time deci-
sion making. Streaming data integration is a way 
of integrating several systems by processing, cor-
relating, and analyzing data in memory while con-
tinuously transferring real-time data from one sys-
tem to another. Siddhi can continuously monitor 
event streams and send alerts and notifications. 
This paves the way for real-time dynamic decision 
making based on predefined rules and the current 
state of the connected systems (Suhothayan et al., 
2011). Siddhi is equipped with a set of basic ma-
chine learning algorithms (Hastie et al., 2018), but 
their number is limited and do not include modern 
deep learning solutions. Therefore, there is a need 
to extend the Siddhi based CEP system with intel-
ligent agents that could provide contemporary ML 
algorithms. 
The CEP system can be seen as a collection of co-
operating agents and therefore falls into the group 

of applications with microservice architecture 
(Wolff, 2016). The analyzed application area, i.e., 
security monitoring, requires high availability. A 
state-of-the-art solution for implementing micro-
services-based applications in high availability 
clusters is Kubernetes (Kubernetes, 2022). It is an 
open-source platform for automatically deploy-
ing, scaling, and managing containerized applica-
tions. Kubernetes provides the ability to heal de-
ployed services by restarting failed containers and 
replacing or rescheduling containers when their 
hosts fail. However, restarting failed containers is 
not the only aspect of high availability. To handle 
large and cumulative workloads the performance 
of individual agents must also be ensured. This is 
especially important for intelligent agents execut-
ing computationally complex machine learning 
algorithms. 
 
3. Types of intelligent agents 
 

From the deployment and performance of CEP, 
intelligent agents could be divided into two 
groups: stateless and stateful. Stateless do not 
have any internal memory, they produce the out-
put based on current inputs. Where stateful have 
an internal state that is changed during analysis of 
a new event and must be kept for processing of a 
new event.  
Most of AI classification algorithms like multi-
layer perceptron, decision trees or SVM (Hastie et 
al., 2018) models are stateless agents. They are 
feed with input data and produce the output (i.e., 
the id of a class for classification tasks or a real 
number for regression problems). They have an 
internal state, the model fit during training, but its 
read-only and is not changing during generation 
of output (model inference).  
The stateful agents works differently, they process 
a sequence of events by analyzing the current 
event and internal state produced during the pre-
vious event analysis. The Hidden Markov Models 
(Limnios & Oprisan, 2001) and LSTM recurrent 
networks (Greff et al., 2017) are examples of such 
style of processing. LSTM networks are very suc-
cessful in any sequence analysis for example in 
natural learning processing (Peters et al., 2018), 
where text is seen a sequence of words of even 
letters. However, due to many hidden states re-
quire a lot of computing resources, especially in 
BI-LSTM (Greff et al., 2017) versions. 
Note that stateless agents can work not only on the 
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current event, but also on a sequence of past 
events. Since most CEP engines feature event 
stream windowing (Suhothayan et al., 2011) it is 
possible to aggregate the historical event into the 
input to stateless intelligent agent. This can be 
done in sliding mode (overlapping windows) or in 
batch mode (windows with no overlapping 
events). This allows the intelligent agent to pro-
cess data in stateless mode but make decisions 
based on a sequence of current and historical data. 
Feeding historical data to a classifier as separate 
values is a time series analysis scheme commonly 
used in machine learning. For example, if we as-
sume that today temperature is a function of last 
n-days temperatures and the amount of precipita-
tion in the previous days, we can feed the classi-
fier with 2n inputs (vector consisting of past  
n-temperatures and past n-precipitation) (Ab-
hishek et al., 2012). The SOTAs in image and text 
processing, i.e. Visual Transformers (Huang et al., 
2020) and BERT (Devlin et al., 2019), are based 
on the transformer architecture. It extensively 
uses the attention mechanism that is based on gen-
erating output sequences as a weighted sum of 
processed sequence of inputs. So, a sliding win-
dow of historical input events allows to decide in 
a stateless mode. 
As stated in the introduction, an important ele-
ment of CEP is the speed of event processing. Al-
gorithms used in intelligent agents require a lot of 
computation power Most of CEP are using mes-
saging and queuing systems to manage communi-
cation between agents so stateless agents could be 
very easily scaled up and since the queuing sys-
tems works as a load balancer. However, it is not 
possible in case of stateful agents. So in this case, 
the performance is even more important aspect. 
We propose to build intelligent agents  called 
EPA  Event Processing Element  as ontogenic 
neural networks. The main goal is to find an ar-
chitecture that allows for the best generalization 
quality. The network must have a certain margin 
of freedom that lies in the adaptive parameters and 
allows the model states to change smoothly. Well-
chosen margins of freedom together with model 
complexity control criteria also allow to fight the 
problem of local minima (Bonarini et al., 2003). 
A model changing its architecture moves to other 
adaptive parameter spaces with a different error 
function, where the learning process continues 
and new changes in the architecture are possible. 

In this way, such a learning model can explore dif-
ferent spaces in search of a certain optimum. 
The methods for checking the complexity of net-
work architectures can be divided into three 
groups: 
 magnifying  these models include algorithms 

that allow to add new neurons or new connec-
tions among neurons, 

 reducing  methods that remove unnecessary 
neurons or connections among neurons or al-
gorithms that can join groups of neurons or 
connections between neurons, 

 cooperative systems  groups of models, each 
to solve the subtask of the problem and the 
management system makes final decisions. 

 
4. Case study 
 

4.1. Topology tuning 
 

Our intelligent agent  EPA  is based on reducing 
ontogenic neural network. The fully connected 
three-layer Multilayer Perceptron (MLP) is the 
starting point (Pratihar, 2009). The final topology 
is a result of neurons connection reducing based 
on the actual and previous answers of the EPA. It 
means we must store the history of the outputs and 
to take them into account for the decision which 
interconnection can be eliminated. The first pos-
sible approach for the reducing procedure is based 
on significance factor: 
 
si=E(without_neuron_i)  E(with_neuron_i) (1) 
 
which determines the difference between a net-
work error obtained without and with the partici-
pation of a neuron i. This method requires consid-
erable calculation costs  to be determined for 
each coefficient si of equation (1) an error for the 
whole training set. Neurons with the less signifi-
cance factors can be removed. 
The similar  also passive  (2) way of the signif-
icance coefficients determining has been used in 
the FSM system (Feature Space Mapping) 
(Adamczak et al., 1997; Duch & Diercksen, 1997; 
Duch et al., 1995; Srivastava, 2008). Significance 
coefficients are determined for each hidden layer 
neuron after interrupting the learning process: 
 
Qi = Ci (X)/|X| (2) 
 
where: |X|  number of training vectors, Ci (X)  
number of correct answers given by neuron i from 
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input set X. In FSM type network each neuron 
from hidden layer is responsible for the class. The 
neuron with Qi close to zero is removed. 
Methods that reduce the structure of a neural net-
work can often be considered as regularization 
process. In the weight decay procedure (Hinton, 
1987) for standard measure of error of model E0(f) 
 

 (3) 
 
the following factor is added (Weigend et al., 
1990, 1991): 
 

 (4) 
 
where: w0  is constant parameter  the experi-
ment shows  should be equal to one, if |wi| >> 
w0 the factor goes to , if |wi| << w0 goes to zero. 
The parameter  can be tuned during learning pro-
cess: 

  =  +  if En < D or En < En-1, 
  =    if En n-1 and En , 
  = 0.9  if En n-1 and En < D, 

where: En  the last epoch error, D  final error for 
the training process. Finally, the training algo-
rithm called Optimal Brain Damage (OBD) (Le 
Cun et al., 1990) looks as follows. 
1. Set the starting topology. 
2. Make the training process using classic gradi-

ent method until the error is acceptable and the 
changes are not important. 

3. Calculate the significance factors taking into 
account the regularization parameters. 

4. Remove the weights fixed to the extremely low 
values of significance factors. It means turn-off 
the neurons from the hidden layer. 

5. If the weights are reduced go to Step 2. 
Of course the reduced number of neurons is ac-
ceptable if the network answer is still correct from 
the functional point of view. If not it is obligatory 
to come back to the previous version of the topol-
ogy. The OBD approach does not guarantee cor-
rect results of training procedure with the limited 
number of neurons (Weigend et al., 1990, 1991). 
It means the CEP construction have to provide the 
availability to the feedback signals and to preserve 
the earlier calculated results. In other words  our 
EPAs work not only on the current event but also 
on a sequence of past events and the dynamic 

structure of CEP is the key feature of the proposed 
solution. 
 
4.2. EPA description 
 

We decided to create four independent types of in-
telligent agents to deal with four types of event 
sensors: 
 TS  two-states sensors responsible for simple 

events  like on-off, open-closed, 
 AM  active movement sensors  output: dis-

tance to moving object, 
 TM  temperature sensors  output: the actual 

temperature, 
 BL  brightness level  output: actual bright-

ness measured using the proper units. 
Of course, these parameters can be exchanged to 
actual needs driven by the safety system features. 
Potential sources of events considered: access 
monitoring, area monitoring, mass messages, fire 
risk, internal notifications, video monitoring, 
communication channels, biometrics, access vio-
lation, temperature risk, gas hazard, acoustic 
threat, biological and medical risks, flood risk, 
open / close state, assembly / accumulation risk, 
system operator signal, user defined. A wide spec-
trum of potential sources of events does not ex-
clude the use of a unified approach to the descrip-
tion of these events. We assume that the source  
event generator  will determine the record of the 
given event in a kind of table. The number of de-
scription fields and their types are uniformly de-
fined. Such approach will allow for the initial ag-
gregation of events according to the reasons for 
their occurrence, as well as subsequent binding 
events in teaching vectors for intelligent infor-
mation processing systems that will be used to ac-
curately analyze the situation in the life of the sys-
tem described by data recorded from many sen-
sors.  
The package of the following fields is stored in 
unified structure: 
 

Event_ID, Source_Name, Source_ID,  
Source_GPS, Object_ID, System_ID,  

Event_Date, Event_Occurence, Event_Duration,  
Event_Value, Event_Importance,  

Event_Probability, Event_Type, Event_Info. 
 
For the set of experiments 1000 records for each 
of four selected types of sensors were generated 
covering the wide spectrum of possible input data. 
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The data were used to prepare the training  70% 
of population  and testing  30% of population  
vectors of 10 inputs: 
 

Event_ID, Source_ID, Object_ID, System_ID, 
Event_Occurence, Event_Duration,  

Event_Value, Event_Importance,  
Event_Probability, Event_Type. 

 
All introduced data were normalized  reflected 
from the original scale to [0,1] range. The training 
vectors were equipped with the correct answer  
gradient methods of neural network training needs 
the teacher  as a source of expected output. We 
prepared four independent neural networks  four 
intelligent agents dedicated for each of four types 
of sensors. The output of each intelligent sensor is 
the value from 0 to 1 to describe the importance 
level of sensor reaction. The fifth neural network 
models the intelligent agent  as final voting ele-
ment. Its input vector is created based on four in-

way the final output can be read as aggregated sig-
nal of alarm in the system. Of course, the final 
agent training procedure needs the expert answer 
if the actual input vector looks like the alarm situ-
ation. Such hierarchical structure of the single 
processing element gives a chance to create the 
flexible solution properly fixed to actual system 
needs (Fig. 1). 
 
   Event   Intelligent hierarchical EPA     Decision 

 
Figure 1. Intelligent hierarchical EPA. 
 
4.3. EPA topology and training 
 

The Event Processing Agents cooperating with 
the sensors are  initially  fully interconnected 
Multilayer Perceptron. Next, we transform them 
into ontogenic neural networks with flexible to-
pology. The size of the input layer is equal to the 
size of the input vectors. It means we have 10 neu-
rons there ready to input the float digits represent-
ing the components described in the previous sub-
section. The output layer has only one neuron to 

generate the answer of the net as the level of im-
portance of the data driven by the input sensor. Of 
course, there is no problem to convert this fraction 
value to two state using simple threshold mecha-
nism. The size of the single hidden layer is equal 
to 20 neurons as a starting value, but during the 
training procedure the number of active neurons 
is reduced by the Optimal Brain Damage (OBD) 
mechanism using regularization factors. This way 
the minimum number of working neurons in hid-
den layer is only 4. The training procedure was 
done for each EPA individually using the proper 
set of input vectors dedicated for each sensor. 
Each topology created as a result of OBD is 
trained again. The number of epochs is limited by 
the no change observation taking into account the 
network error minimizing. The final results for 
each EPA  and data from each sensor  are pre-
sented in Table 1.  
 
Table 1. EPA correct answers [%] for different type 
of sensors and limited number of neurons in hidden 
layer as OBD mechanism result 
 

Sensor Distance 
type 

Number of neurons in hidden layer 
 OBD result 

4 6 8 10 12 14 16 18 20 
 1L  61 65 69 70 70 87 74 71 67 

TS 2L  56 56 60 62 67 76 71 73 69 
 L  47 51 53 57 62 65 61 57 55 
 1L  62 68 68 73 73 77 75 72 70 

AM 2L  55 58 58 63 66 72 72 70 68 
 L  45 45 52 52 58 63 63 62 60 
 1L  56 57 66 68 70 85 74 70 65 

TM 2L  56 56 57 62 66 74 69 71 69 
 L  43 45 50 55 61 67 61 55 53 
 1L  60 65 67 75 71 78 72 72 71 

BL 2L  52 55 59 65 66 76 71 70 68 
 L  43 43 49 51 51 64 63 61 60 

 
The initial values of all weights are generated as 
random from [-1,1] range. The sigmoid transfer 
function is applied to all neurons from hidden and 
output layer. The training is done using Leven-
berg-Marquardt algorithm (Kung, 1993). Three 
different kinds of experimental distance have been 
used during error of model calculation (Kung, 
1993). 
The voting Event Processing Agents is  initially 
 also fully interconnected Multilayer Perceptron. 

The size of the input layer is equal to the size of 
the input vectors. It means we have 4 neurons 
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there ready to load the products of the EPA col-
laborating with the data taken from sensors. The 
output layer has only one neuron to generate the 
answer: one of two possible states: alarm / no 
alarm. The size of the single hidden layer is equal 
to 20 neurons as a starting value, but during the 
training procedure the number of active neurons 
is reduced by the Optimal Brain Damage (OBD) 
mechanism using regularization factors. This way 
the minimum number of working neurons in hid-
den layer is only 4. 
The training procedure was done for using the set 
of vectors created based on the components aggre-
gated as outputs from EPA cooperating with sen-
sors. The number of epochs is limited by the no 
change observation taking into account the net-
work error minimizing. The final results  the per-
centage of correct answers  are presented in  
Table 2. The initial values of all weights are gen-
erated as random from [-1,1] range. 
The sigmoid transfer function is applied to all  
neurons from hidden and output layer. The train-
ing is done using Levenberg-Marquardt algo-
rithm. Three different kinds of experimental dis-
tance have been used during error of model calcu-
lation (4). 
 
Table 2. Voting EPA correct answers [%] for limited 
number of neurons in hidden layer as OBD  
mechanism result 
 

Distance  
type 

Number of neurons in hidden layer 
 OBD result 

4 6 8 10 12 14 16 18 20 
1L  67 69 72 75 77 82 88 85 81 
2L  58 64 68 70 73 74 75 79 76 

L  53 55 58 62 65 71 73 70 70 

 
4.4. Analysis and sensitivity discussion 
 

The experimental results pointed in Table 1 show 
that intelligent hierarchical EPA is able to provide 
correct recognition of the importance level based 
on data from different types of sensors. Both bi-
level and scaled continuous outputs from the sen-
sors can be useful source of data for the proper 
decision. We find the answer of EPA cooperating 
with sensor as correct if it equals to required out-
put within [-0.1, +0.1] range. The extremely re-
duced number of neurons according to OBD 
mechanism causes insufficient  incorrect from 
the functional point of view  answer of EPA. It 
seems natural, but on the other hand  the onto-

genic approach to EPA construction  with on-
line hidden layer tuning  looks very promising. 
We started with twenty neurons located in this 
layer, but this value  looking good as a-priori as-
sumption  is not optimal. The best size is 14 neu-
rons for all types of the sensors. Of course this op-
timal number of neurons can be different if we use 
other sets of input data or we redefine the input 
vectors. The ontogenic topology is caused by the 
data used for training procedure. The correct EPA 
answers available for all tested types of sensors is 
a kind of proof that the set of 1000 training vectors 
sounds sensible to create the required level of 
recognition skills of single EPA. By modelling the 
training vectors sets we can tune the level of EPA 
reaction for input as well as we can store in the 
EPA deeper and more or less detailed history of 
the system life. We know how important is the 
correct  required output during the train-
ing process. This output should be based on the 
expert knowledge to finish the weights setting at 
the necessary level of details. The EPA outputs for 
all types of sensors look promising, but better re-
sults we find for TS  two-states sensors respon-
sible for simple events and TM  temperature sen-
sors. Maybe these types of data are more conven-
ient for neural modeling, or the expert knowledge 
used during training is better, or other types of 
sensors need more epochs or more data to estab-
lish final values of weights. Table 1 also tells us 
that for all types of sensors the most classic ap-
proach to distance measure L1 is the best for the 
task we discuss. It means the easiest implementa-
tion in the practical future of the system. The vot-
ing EPA results  Table 2  looks also very prom-
ising. The final answer of the hierarchical EPA 
structure is the best for the topology with 16 neu-
rons in the hidden layer. Again the OBD mecha-
nism allows to reduce the size of this layer to the 
most suitable size. And the aggregation of the pre-

using the same L1 type of distance during training 
procedure. The hierarchical construction of the in-
telligent EPA allows to create more sophisticated 
cascades of EPAs collaborating with sensors with 
the final decision block. This way we can decide 
about the components of the voting EPA answer, 
we can model the influence of the events for the 
next step of the safety system reaction. 
During the last part of the experiment, we try to 
check the EPA sensitivity for the changes of the 
input vectors. Each unified input vector collects 
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the set of parameters describing the single sen-

constant or almost constant. 
 
Table 3. EPA sensitivity [%] for different type of 
sensors and limited number of neurons in hidden 
layer as OBD mechanism result 
 

Sensor Distance 
type 

Number of neurons in hidden layer 
 OBD result 

4 6 8 10 12 14 16 18 20 
 1L  10 10 8 7 7 6 6 4 3 

AM 2L  13 13 11 10 9 7 6 5 4 
 L  15 15 12 10 10 9 7 6 5 
 1L  8 8 7 7 6 5 5 3 2 

TM 2L  10 10 11 8 9 6 6 5 4 
 L  12 14 12 10 10 8 7 6 5 
 1L  10 10 8 7 7 6 6 4 3 

BL 2L  13 13 11 10 9 7 6 5 4 
 L  15 15 12 10 10 9 7 6 5 

 
The main changes are observable in these compo-
nents which reflect the environmental feature 
tested by the sensor. This way we try to find if the 
EPA answer is really provoked by this leading 
value from the input vector. Result are presented 
in Table 3. We can easily notice that greater num-
ber of neurons provides the better sensitivity for 
input data. The net with the greater number of 
neurons in hidden layer can analyze the input vec-
tor in more detailed way. For TM sensors we find 
better sensitivity than for AM and BL sensors. 
The previous sentence is kind of analogy to the 
first part of the experiments, and we are not sur-
prised about it. There is no sense to check the sen-
sitivity parameter for TS sensors because inputs 
are binary. The L1 distance type is the most suita-
ble. 
Results of the case study discussion show the sen-
sible scale of the topology of EPA tunning taking 
into account the correct answers and required 
level of output sensitivity. These conclusions have 
the significant influence for the practical imple-
mentation of EPA structure  using GPU  as 
complete CEP system. 
 
5. CEP with intelligent agents architecture 
 

We propose a micro-service architecture (Wolff, 
2016) for event processing with intelligent agents. 
The system consists of: NATS Streaming (Nats, 
2022) for inter-component communication, Sid-
dhi (Suhothayan et al., 2011) as CEP engine and 
intelligent agents itself. NATS Streaming due to 

its high performance and support from Siddhi acts 
as a communication middleware. 
 

 
Figure 2. Siddhi agent configuration  
for communication with intelligent agent by NATS. 
 
Intelligent agents are deployed as containers and 
act as NATS subscribers. They actively listen to 
NATS topics and receive messages. After pro-
cessing the message using built-in ML algorithms, 
they send messages back to the Siddhi. We have 
created a simple Python library to facilitate the 
creation of intelligent agents. The programming 
interface consists of two methods: initialization, 
which is mainly used to load the model, and pro-
cessing which is called when a message arrives 
and returns the result message.  
The NATS script used to communicate with the 
intelligent agent is shown in Figure 2. 
Intelligent agents are containerized using Docker 
(Merkel, 2014). This not only allows a basic ver-
sion of the system to be quickly deployed on al-
most any computer (using Docker Compose), e.g., 
for testing and development, but also for auto-
matic and continuous deployment using Kuber-
netes (Kubernetes, 2022). As mentioned in Sec-
tion 2, Kubernetes provides scalability and high 
reliability, and enables easy management of a 
highly distributed event processing system. We 
maintain two versions of the containers, one for 
implementation on the CPU and one for imple-
mentation on the GPU, if needed. 
 
6. Implementation of deep intelligent agents 
 

Deep learning architectures (such as LSTM and 
transformers) require a lot of computation power 
even in the inference phase. Therefore, the most 
typical scenario is to use the GPU to compute the 
network results. However, the GPU is a limited 
resource, and it is worth investigating how a deep 
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network performs on the CPU alone. To analyze 
it and to select the optimal number of CPUs and 
the batch size, we conducted a set of experiments. 
We tested the PyTorch implementation of the 
BERT network with Hugging Face (Wolf et al., 
2020) and the ONNX Runtime (Microsoft, 2022). 
The last uses an open-source machine-independ-
ent format and is widely used for exchanging neu-
ral network models (Bai et al., 2022). Both solu-
tions allow the model to run on GPU or CPU. We 
trained the SBERT model (Reimers, Gurevych, 
2019) and tested the longest sequences (512 to-
kens). In the tests, we used AMD Ryzen 9 3950X 
and NVIDIA GeForce RTX 3090 graphics cards. 
The results are shown in Table 4. All tests were 
repeated 100 times and the results represent the 
average value. 
 
Table 4. BERT inference time per task in ms for  
different deployments. In case of a usage of batches 
the reported time is a time of processing a batch  
divided by the size of a batch 
 

Batch size 
PyTorch ONNX 

1 4 8 1 4 8 
GPU 9.6 7.4 6.5 8.1 7.2 6.4 

1xCPU 3103 3116 3071 968 1006 1103 
2xCPU 1597 1611 1640 527 521 532 
4xCPU 848 858 858 298 293 290 
8xCPU 536 502 498 202 187 184 

16xCPU 415 360 341 177 158 152 
 
The results show that the ONNX implementation 
outperforms PyTorch in terms of inference time 
for both CPU and GPU cases. The tests were per-
formed for different batch sizes. The results show 
that using batches speeds up the average inference 
time, but the efficiency of using batches is low. 
Therefore, the batch size must be carefully se-
lected, especially for long processing times, as in 
the case of CPU-based implementations. Moreo-
ver, the use of batches for CPU is justified only 
when we have more CPU cores than the batch 
size, in other case there is no average speed-up. 
Even in such cases, the speed increase by using 
batches is not very large. For example, the differ-
ences between batch sizes of 4 and 8 (for more 
than 8 CPUs) are less than 2% and 4%, respec-
tively. Thus, the use of batches should be limited 
to a small value and considered for reasons other 
than speeding up model inference; for example, 
event batches could speed up communication be-

tween the queueing system and the agent. The per-
formance of multiprocessor inference decreases 
very quickly as a function of the number of cores 
used (see Table 5). Therefore, the only reason to 
use more than one CPU core for inference is to 
reduce the processing time per event. The 
PyTorch implementation gives better perfor-
mance values, but as shown in Table 6, the ONNX 
implementations are 2-3 times faster on CPU than 
PyTorch. 
 
Table 5. Multi CPU implementation efficiency.  
The ratio of the time required by one processor to the 
time required by n-processors divided by n (for batch 
of size 1) 
 

Number of CPU 2 4 8 16 
ONNX 0.918 0.812 0.599 0.341 

PyTorch 0.971 0.914 0.772 0.467 
 
Table 6. The ratio of ONNX processing time to 
PyTorch processing time. The 5th column of Table 4 
divided by the 2nd column 
 

GPU CPU 
1 2 4 8 16 

1.18 3.2 3.0 2.84 2.65 2.34 
 
Another important aspect of the deep agent imple-
mentation is the memory consumption and model 
loading time. The results for the GPU implemen-
tation are shown in Table 7 and for the CPU in 
Table 8. Again, it can be seen that the ONNX im-
plementation is better than the PyTorch one. Both 
implementations allow the model to be removed 
from memory, but not to free all memory. Obvi-
ously, killing the process will free all memory, but 
given the architecture proposed in Section 5, this 
is not the case under study, since running a new 
pod in Kubernetes with the image and model 
downloading may take more than 6s. For the 
GPU, the time to reload the model after its release 
is approx. 3 times shorter than the first load. For 
the CPU, this phenomenon does not occur. 
 
Table 7. Usage of memory and time of loading 
model in case of GPU implementation 
 

Time / Memory PyTorch ONNX 
Time of model loading 3.48 s 1.26 s 
Time model reloading 0.88 s 0.46 s 

Memory usage 2.6 GB 1.7 GB 
Memory after freeing model 2 GB 0.6 GB 
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Table 8. Usage of memory and time of loading 
model in case of CPU (results for 8 cores and batch 
size 4) 
 

Time / Memory PyTorch ONNX 
Time of model loading 0.8-0.9 s 0.5 s 

Memory usage 1.5 GB 1.1GB 
Memory after freeing model 0.9 GB 0.4 GB 

 
The performed analysis shows that deep agents 
should be implemented in ONNX runtime. In case 
of the lack of GPU the CPU implementation is 
possible but we have to use several CPUs, its 
number could be calculated looking at Table 4 re-
sults. Knowing the frequency of input events, we 
can estimate the maximum acceptable processing 
time for the agent and select the lowest number of 
CPU that allows processing time within limits. 
 
7. Conclusion 
 

The chapter discusses performance aspects of in-
telligent agents in Complex Event Processing 
(CEP) systems. Actual methods of implementing 
and deployment of CEP systems are presented. 
The intelligent agent problem and the idea of cre-
ating a CEP system with intelligent agents are de-
fined. A case study with a set of intelligent agents 
designed to handle real events caused by environ-
mental data monitoring is pointed out. The analy-
sis performed shows that deep agents should be 
implemented in the ONNX runtime. In the ab-
sence of GPU, a CPU-based implementation is 
possible, but we need to use several CPUs. The 
frequency of input events is the main feature to 
estimate the maximum acceptable processing time 
of the agent and to choose the least number of 
CPUs to process the data in a given time. 
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