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Abstract  
 

A system subject to several deterioration processes is studied. These processes arrive to the system fol-
lowing a Cox process and they grow according to a homogeneous gamma process. The system is failed 
when a degradation process exceeds a certain failure threshold. The maintenance strategy implemented 
on the system is condition-based maintenance, the deterioration state of the system is checked, and re-
placements are performed if necessary. A random effects model is considered to deal with the heteroge-
neities between processes, in particular, a uniform distribution is used to model the inverse of the scale 
parameter of the gamma process. Finally, the analytic cost model is obtained and analysed through 
some numerical examples.  
 
1. Introduction  
 

It is increasingly necessary to model the deterio-
ration of a system subject to multiple degradation 
processes (Wu & Castro, 2020; Jia & Gardoni, 
2018). This can take two different approaches, the 
first of which assumes that all deterioration pro-
cesses affecting the system start at the same in-
stant in time. However, this is unlikely or difficult 
to occur, so a second approach will be adopted 
which assumes that deterioration processes start at 
random times and deterioration increases depend-
ing on the system and its environment. These pro-
cesses may or may not be considered independent 
of each other.  
Reliability depends heavily on the failure data that 
determine the suitable lifetime models. Due to 
monitoring techniques, degradation models have 
become an important tool instead of the traditional 
reliability study. In general, aging-related failures 
are associated to stochastic deterioration of the 

components. Degradation-threshold models (Ca-
;  have been in-

cluded in order to facilitate the reliability analysis 
of complex systems. The system is considered to 
be failed when the degradation processes reach a 
certain predefined threshold.  
The failure of a system relates to multiple degra-
dation processes, each of them with different char-
acteristics. These degradation processes could 
also be affected by the environment and external 
working conditions.  
The degradation processes of a complex system 
could be dependent because usually the failure of 
a component is reflected in others (Castro & 
Landesa, 2019). There are also covariates that in-
fluence the model, such as the environmental con-
ditions. That provides us external information that 
affect the system. For example: temperature, hu-
midity, or climate conditions. The study of covari-
ates was carried out by Lawless and Crowder in 
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(Lawless et al., 2004), for Wiener and gamma pro-
cesses. The environmental conditions are repre-
sented as explanatory variables, whose effects are 
modeled by a covariate-effect function used to 
modify the model parameters.  
Recent literature reviews on degradation and 
maintenance can be found in van Noortwijk, de 
Jonge and Scarf, among others (Noortwijk, 2009). 
Time-based maintenance was first studied by Bar-
low and Hunter (Barlow et al., 1966). Preventive 
maintenance policies have had an increasing pop-
ularity in the last years. It may be due to the ad-
vances in sensor technology. Condition monitor-
ing is impossible in some devices because costs 
are high. On the other hand, condition-based 
maintenance is difficult to plan (Alaswad, 2017; 
Huynh et al., 2017). Instead of that, aged-based 
maintenance is sometimes used. The age of the 
system determines when preventive maintenance 
takes place. It has other problems, early preven-
tive maintenance results in a high cost and late 
maintenance results in a higher probability of fail-
ure. 
In this chapter, we study the modelling and 
maintenance strategy of a system subject to vari-
ous degradation processes. For the sake of sim-
plicity, we consider perfect repairs on the system. 
It means that the system is replaced by a com-
pletely new one when replacements at periodical 
inspection times are performed. However, realis-
tic maintenance is mostly imperfect and the sys-
tem state after performing a maintenance is be-
tween the as-good-as-new state (AGAN) and the 
as-bad-as-old state (ABAO).  
The purpose of many research works on reliability 
is to determine the lifetime distribution or, at least, 
adjust an appropriate distribution. Our approach is 
to assume a gamma process (suitable for repre-
senting non-decreasing degradation) and to con-
sider the shape and scale parameter as random pa-
rameters (Abdel-Hamed, 1975). This assumption 
provides a good description of failure data and 
heterogeneities between the different components 
of a system.  
Heterogeneity of the different components of a 
system can be represented through two main 
sources of variability.  
1) Heterogeneous components. Maintenance in 

multi-component systems composed of many 
heterogeneous components with different be-
haviours is a key challenge in industry. These 
components may require different maintenance 

actions that should be studied separately. Elec-
trical components, for example, fail without 
warning. On the contrary, degrading compo-
nents may show a certain deterioration that is a 
precursor of failure. The heterogeneities be-
tween components can be modelled in many 
ways: using different distributions for repre-
senting their degradation paths, or using the 
same distribution, but with random parameters 
to represent that variability between compo-
nents. 

2) Lead time. In practice, there is usually a time 
between the failure and the arrival of the repair 
team for performing the corresponding mainte-
nance action. This lead time is due to multiple 
factors. 

A probability distribution is used on the scale pa-
rameter of the gamma process to represent this 
variability. The uniform distribution has been 
chosen in this chapter. This distribution is flexible 
since is used to model uncertainty based on previ-
ously available data; it is commonly used as a 
prior distribution in a Bayesian approach.  
An important advantage of the uniform distribu-
tion it is simplicity.  
 
1.1. Objectives 
 

The objective of this chapter is to analyse a con-
dition-based maintenance (CBM) strategy and 
maintenance planning for a system subject to in-
ternal degradation.  
The arrival process intensity is considered not de-
terministic but stochastic. That notion was intro-
duced by Cox through the doubly stochastic Pois-
son process, or Cox process, which consists of a 
Poisson process with stochastic intensity modu-
lated by an outside process that influences the 
evolution of the counting process (Pinsky & Kar-
lin, 2011). The motivation for using this process 
is that external shocks can accelerate the arrival of 
new processes or shocks to the system, hence the 
deterministic intensity is not suitable. It is useful 
for modelling the system lifetime of a dynamic en-
vironment (Straub, 2009), apart from different ap-
plications in reliability and maintenance, when the 
failure rate suffers an abrupt increment due to ex-
ternal factors. 
In our case, this external process is a Poisson pro-
cess. The internal degradation is the result of the 
stochastic arrival of multiple degradation pro-
cesses which grow according to a homogeneous 
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gamma process.  
The main objectives covered in the work are: 
1) develop a condition-based maintenance model, 
2) introduce preventive replacements and peri-

odic inspections, 
3) analyse the expected cost rate of this mainte-

nance policy, 
4) optimise the expected cost rate by the optimi-

zation of the preventive threshold and the time 
between inspections, 

5) consider heterogeneities in the model, 
6) study the influence of the gamma process pa-

rameters in the model. 
 
2. Gamma process models 
 

Deterioration models play an important role in im-
proving the durability and reliability and planning 
an appropriate maintenance strategy for the sys-
tem. The gamma process is usually employed in 
modelling degradation processes that involve in-
dependent non-negative increments. However, in 
most systems there is substantial heterogeneity 
between the degradation paths of the components. 
To model this variability, random effects are in-
troduced in the degradation models, for example, 
by using random coefficients.  
 
Definition 1. The homogeneous gamma process 

 with shape function  and 
scale parameter  is a continuous-time sto-
chastic process with independent gamma-distrib-
uted increment and the following properties:  
1.  with probability 1. 
2.  follows a gamma process with 

shape parameter and scale param-
eter . 

3.  has independent increments.  
The gamma process is widely employed in mod-
elling continuous degradation or damage in mate-
rials and engineering structures. 
 
Definition 2. The probability density function of a 
gamma distribution with shape parameter 

and scale parameter is: 
 

, (1) 
 
with 
 

 (2) 
 

Remark 1. The system fails when the deterioration 
level of one of the degradation processes exceeds 
the failure threshold. Supposing that the degrada-
tion grows following a gamma process, the fol-
lowing random variable is defined:  
 

. (3) 
 
This variable represents the first time at which  
the gamma degradation process exceeds the 
threshold L. 
 
Definition 3. The distribution function of  is 
given by 
 

  
 
            (4) 
 
Remark 2. Another important survival function is 
the lifetime distribution of  
 

 
 

 (5) 
 
where  is the gamma distribution function 
with parameters  and . In this formula the 
overshoot effect of gamma processes has not been 
taken into account.  
 
2.1. Random effects  
 

To deal with the variability between processes in 
this section, we consider that the degradation 
paths can be described by a gamma process with 
random effects, that is, a model in which one or 
both parameters of the gamma process are random 
(Lawless et al., 2004; Pulcini et al., 2013) and 

- . Here the heteroge-
neities between the different degradation pro-
cesses are quantified by randomizing the scale pa-
rameter of the gamma process. This approach is 
assumed instead of the analysis of explicit de-
pendences between degradation paths since the 
formulation would be more complex and copulas 
should be used (Liu et al., 2014; Wang et al., 
2012). 
In this case, we assume that the scale parameter is 
random. With that, both the mean and the variance 
of the process are influenced by this choice.  
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The density function of a homogeneous gamma 
process considering that the scale parameter 

 follows a uniform distribution on 
the interval  is expressed as follows: 
 

  
 
                . (6) 
 
With that, we obtain the expectation of the process 
as:  
 

. (7) 
 
We can see that the expectation is a linear function 
with respect to the time t. 
And finally, the variance of the process consider-
ing random effects on the scale parameter is the 
following expression: 
 

. (8) 
 
The study of the monotony of the ratio between 
the variance and the expectation of the homoge-
neous gamma process with random effects shows 
that this ratio is increasing with respect to time t.  
 

. (9) 
 
3. Preventive maintenance policy 
 

The deterioration levels of the different processes 
cannot be directly observed, so that the system is 
periodically monitored. These inspections check 
the system state and reveal its exact degradation. 
We assume a preventive maintenance policy in 
this work. For this purpose, two degradation 
thresholds are considered: the preventive thresh-
old (called M) and the corrective threshold (de-
noted by L), and the inequality M < L holds. If the 
degradation level of a process exceeds the correc-
tive threshold, this means that the system is highly 
degraded and can no longer perform its function. 
This failure results in corrective maintenance. 
However, if only the value of the preventive 
threshold is exceeded, the system is deteriorated 
but can continue to perform its function. Placing 
two different thresholds is very useful for cost op-

timization and to avoid unnecessary replace-
ments. Preventive and corrective replacements 
both consists of the total replacements of the sys-
tem and the system is said to be failed if one of the 
degradation processes reaches the corrective or 
failure threshold.  
The main assumptions and important features of 
the model are explained below. 
 
3.1. Assumptions of model 
 

 The system is subject to continuous internal 
degradation initiated at random times by sev-
eral processes.  

 The failures arrive at the system following a 
shot-noise Cox process and they grow accord-
ing to a homogeneous gamma process. 

 Failures of the system are not self-announcing, 
that is, they are only detected at inspection 
times.  

 The system is inspected periodically each T 
time units to check its deterioration state. The 
following actions are performed: 
1) If the degradation levels of the processes do 

not exceed the preventive threshold, the sys-
tem is in a good condition, and it is left as it 
is.  

2) If the deterioration level of one of the mul-
tiple degradation processes exceeds the pre-
ventive maintenance threshold but not the 
corrective one, a preventive replacement is 
performed, which consists of the replace-
ment of the system by a completely new 
one. 

3) If the system is failed at an inspection time, 
a corrective replacement is performed, and 
the system is also replaced by a new one. 

A realization of the deterioration process is shown 
in Figure 1. The times  represent the ar-
rivals of new events. These three processes grow 
according to a homogeneous gamma process. The 
variability between them is due to different shape 
parameters. Preventive and corrective thresholds 
are shown, and also the first time at which the pro-
cesses exceed them, which is given by (3).  
 The time duration of the replacements is con-

sidered negligible. 
 A sequence of costs associated with the 

maintenance tasks is assumed: 
1) cost due to corrective replacements:  

monetary units, 
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2) cost due to preventive replacements:  
monetary units, 

3) cost of inspection times:  monetary units, 
4) cost due to downtimes of the system:  

monetary units per unit time. 
 The cost due to corrective replacements is al-

ways higher than the cost due to preventive re-
placements, that is why is better to performed 
preventive maintenance on the system before it 
cannot work anymore.  

 When the system has a corrective failure, in the 
time between the corrective maintenance ac-
tion and the previous inspection time, the sys-
tem is not working, which involves a cost.  

 

 
 
Figure 1. A realization of the deterioration process.  
 
4. Optimization problem  
 

The purpose of this work is to obtain the optimal 
expected cost of the system maintenance process, 
considering the shape and scale parameters of the 
gamma model and the associated costs. For this 
purpose, we will try to minimize the cost by opti-
mizing two parameters: the preventive threshold 
and the time between inspections. In general, if 
the preventive threshold is lower, the system will 
be replaced more frequently; and if the inspec-
tions are more frequent in time, the system will 
not fail as much, since it will be repaired soon af-
ter the failure has occurred. By knowing these op-
timal parameters, an optimal maintenance cost 
can be obtained.  
The renewal-reward theorem provides the follow-
ing expression of the asymptotic cost rate, reduc-
ing the process to the first renewal: 
 

 

where  is the expected cost in a replacement 
cycle (that is, the time between two inspections) 
and  is the expected time to a replacement.  
Then, the expected cost rate can be developed as: 
 

 

 
 (10) 

 
where is the expected number of inspec-
tions, is the expected number 
of downs of the system during the interval 

 and  are the prob-
abilities of performing a preventive or a corrective 
replacement at inspection time , respectively. 
 
5. Numerical examples 
 

Some numerical examples obtained by simulation 
of the stochastic processes involved in the model 
The expression for the objective cost function is 
difficult to manage it since it evolves infinity 
sums. A classical way to evaluate the objective 
cost function is to perform simulations on the 
points of the mesh and to find the optimal combi-
nation by visualization or using optimization me-
taheuristic methods such as genetic algorithms 
(Marseguerra & Zio, 2022). 
The optimal maintenance strategy considering a 
model without heterogeneity and a model with 
heterogeneities is next analysed. 
 
5.1. Model without heterogeneities 
 

We assume that the system is working in a dy-
namic environment (Cha & Finkelstein, 2017) and 
is subject to external shocks that arrive to the sys-
tem according to a homogeneous Poisson process 
with rate . 
The stochastic intensity considered for this model 
has the following expression, as it appears in 
(Lemoine, 1986): 
 

 (11) 
 
with  being the number of Poisson processes 
in the system at time t. These Poisson processes 
underlying the main process are the ones that de-
termines the arrival times  which allow to calcu-
late the intensity  of the main process.  
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The degradation processes grow according to a 
gamma process with shape parameter and 
scale parameter . The system fails when a 
degradation process exceeds the failure or correc-
tive threshold L = 10.  
The associated costs assumed in this numerical 
example are the following: 
  monetary units, 
  monetary units, 
  monetary units. 
  monetary units per unit time.  

The optimal maintenance policy consists of find-
ing the pair of values  that optimize 
the cost  given in (10), subject to the re-
striction .  
 
5.1.1. Optimization procedure 
 

The procedure for optimizing the preventive 
threshold and the time between inspections, to-
gether with the minimization of the expected cost, 
is carried out as follows. 
 A grid of size 10 is obtained by discretizing the 

interval [0, 25] into 10 equally spaced points 
for T. We denoted them , . 

 Similarly, a grid of size 8 is obtained by discre-
tizing the interval [0, 10] into 8 equal parts for 
M, denoted by ,  

 For each combination of the pair ,  
, , we have performed 

10,000 simulations applying the Monte-Carlo 
method to obtain the expected cost rate.  

 The optimal values for T and M are obtained by 
direct visualization. They correspond to the 
values which minimise the expected cost rate 
shown in (10). 

By simulation, the optimal values obtained are 
 and , which implies 

an expected cost rate of 29.4070 monetary units 
per unit time.  
In more complex systems with many components, 
the optimisation procedure can be very difficult. 
In these cases, metaheuristics are used, for in-
stance, the genetic algorithm (GA). The algo-
rithms used will depend on the case under study. 
 
5.2. Model with heterogeneities  
 

To develop the model with heterogeneities, we 
assume in this section that the scale parameter  is 
random. The stochastic intensity given by (11) 
defines the degradation rate of the process.  

The shape parameter  of the gamma process 
is the same as in the previous example. The scale 
parameter is random and follows a uniform 
distribution in the interval  The failure of 
the system occurs when the deterioration level 
reaches the corrective threshold . The 
sequence of costs given in the model without 
heterogeneities are imposed in this model. 
To obtain the expected cost rate represented in 
Figure 2, we have performed 10,000 simulations 
on a grid of size 10 for variable time between in-
spection T in the interval  and another grid 
of size 8 for the preventive threshold M in the in-
terval  By visual inspection, the optimal 
values are  and , with an 
expected cost rate of 24.8601 monetary units per 
unit time.  
 

 
 
Figure 2. Expected cost rate of the model with heter-
ogeneities.  
 
5.2.1. Sensitivity analysis of model including 

heterogeneities 
 

We focus now on the influence of the main model 
parameters on the expected cost rate through a 
sensitivity analysis of the gamma process param-
eters. Since  is fixed in each model and  varies 
in the interval , different values for parame-
ters  and b are studied.  
The values for  and b are modified according to 
the following formulas 
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where  and  represent the variation 
percentages of  and b. 
Let us quickly look at the influence of the param-
eters in the model without heterogeneities. Study-
ing computationally how the stochastic intensity 
and the variability of the parameters affect the 
proposed model through a sensitivity analysis, it 
can be observed and deduced that the shape and 
scale parameter have both effect on the optimal 
expected cost. More differences are found when 
the scale parameter varies. Similarly, both param-
eters have effect on the optimal value for T. How-
ever, any clear influence is shown in the case of 
the optimal value for the threshold M. The ex-
pected cost rate decreases as the shape and scale 
parameters increase.  
On the other hand, we will analyse the case with 
heterogeneities, which turns out to be much more 
interesting, since the scale parameter influences 
the cost of the model to a greater extent. 
The sensitivity analysis of the expected cost rate 
and the optimal values for the time between in-
spections T and preventive threshold M is summa-
rized in Tables 1, 2 and 3, with  varying between 
1 and 1.9, and b varying between 1 and 1.75 in 
increments of 0.15 units.  
The optimal expected cost rate shown in Table 1 
increases as the values of  and b increase, which 
implies that the degradation of the system is ac-
celerated. In this numerical example, the random 
choice of parameter  as a uniform distribution on 

 has little influence on the resulting expected 
cost. 
 
Table 1. Sensitivity cost analysis on the values of  
and b for the expected cost rate in a model with  
heterogeneities 
 

\ b 1.15 1.3 1.45 1.6 1.75 
1 20.54 20.67 24.94 20.43 24.31 

1.15 24.83 22.99 27.32 22.28 26.56 
1.3 26.85 24.78 32.32 24.26 28.75 

1.45 29.59 26.95 33.59 25.84 29.44 
1.6 31.37 30.83 37.33 28.37 34.09 

1.75 33.09 32.55 40.22 31.76 35.94 
1.9 34.91 32.50 41.10 33.15 38.11 

 
On the other hand, Table 2 shows that the optimal 
value of the time between inspections T decreases 
as the values of  and b increase. More deteriora-
tion implies more frequent inspections, so it 

makes sense that the periodic inspection time 
would be decreased as the degradation parameters 
of the gamma process increase. However, the 
value of b has almost no influence on the model. 
Finally, no trend seems to be found when varying 
parameters  and b for the optimal values of the 
preventive threshold M represented in Table 3. 
 
Table 2. Sensitivity cost analysis on the values of  
and b for the optimal value of T in a model with het-
erogeneities 
 

\ b 1.15 1.3 1.45 1.6 1.75 
1 8.40 8.07 6.75 8.24 7.28 

1.15 6.84 7.26 6.59 7.67 6.84 
1.3 6.77 6.98 5.42 6.91 6.31 

1.45 5.67 6.20 5.01 6.18 5.66 
1.6 5.29 5.71 4.78 5.79 5.01 

1.75 5.01 5.07 4.41 5.10 4.91 
1.9 4.63 5.25 4.46 5.09 5.39 

 
Table 3. Sensitivity cost analysis on the values of  
and b for the optimal values of M in a model with 
heterogeneities 
 

\ b 1.15 1.3 1.45 1.6 1.75 
1 3.86 3.59 1.60 3.38 2.01 

1.15 2.88 1.73 2.07 1.08 2.00 
1.3 1.58 1.53 2.27 1.52 2.97 

1.45 1.82 1.66 2.15 1.97 2.22 
1.6 2.09 1.63 1.93 3.36 2.90 

1.75 2.65 1.32 2.81 1.77 1.29 
1.9 1.58 2.87 2.82 2.72 2.85 

In general, the decision to implement a model 
with heterogeneities or a model without them de-
pends largely on the parameters chosen for the 
model. In our model, with the chosen parameters, 
it is observed that a model with heterogeneities is 
much better. The cost rate of such a model is 
24.8601 monetary units per unit time, while in the 
initial model, without heterogeneities, it is 
29.4070 monetary units per unit time. Similarly, 
in the model with heterogeneities, the optimal in-
spection parameter T increases with respect to the 
model without heterogeneities, and the preventive 
threshold M decreases, resulting in the system be-
ing replaced before it is too deteriorated. Through 
the sensitivity analysis it has been possible to de-
termine which parameters influence the model 
and to what percentage they do so.  
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6. Conclusion 
 

We have studied a combined model of initiating 
and effective events in this chapter. It is well 
known that, if the initiating events (degradation 
processes) arrive to the system according to a Cox 
process and the degradation processes evolve fol-
lowing gamma processes, the resulting combined 
model follows again a Cox process (Bautista et al., 
2021). 
Without any maintenance, the failure time is in-
creasing failure rate, hence a preventive mainte-
nance policy is potentially worth implementing to 
improve the system reliability.  
A maintenance strategy using random effects in 
the gamma distribution is presented. Although 
these heterogeneities are presented in practice, 
there is not enough research on that. Studying the 
effects of the parameters could be worthy to im-
prove the maintenance and reliability of the sys-
tem. We study the common gamma distribution, 
which is appropriate for modelling continuous 
and non-decreasing deterioration. The shape and 
scale parameters can be determined based on the 
failure data of the system. However, we have con-
sidered that the scale parameter is random, follow-
ing a uniform distribution.  
Random coefficients often implies that mainte-
nance is performed more frequently, and failures 
are less probably to occur. The analysis is com-
pleted using a random effects model and perform-
ing several sensitivity analyses. 
Although in this chapter we have assume that the 
initiation times follow a shot-noise Cox process, 
the result can be extended considering a different 
Cox process such as a Weibull renewal process. 
The developed approach assumes that the degra-
dation processes start following a shot-noise pat-
tern. Further works can consider that degradation 
processes start according to a non-Cox process 
such as a Hawkes process (Chevalier, 2017; Cui 
et al., 2020). A Hawkes process is a point process 
whose main characteristic is that it is a self-excit-
ing process meaning that each arrival of a degra-
dation process increases the rate of future arrivals 
for some period of time (Grandell, 1976). Another 
crucial assumption of our work is that the degra-
dation processes evolve independently and ac-
cording to the same degradation pattern. It could 
be an important limitation, because in real sys-
tems, components are not independent, and we 
can establish dependencies between them or with 

external processes. For future research, different 
degradation patters for the degradation processes 
and dependence between the processes can be 
considered, as well as new structures of the sys-
tems (series, parallel or k-out-of-n structure). An-
other interesting research would be to study the 
model with uncertainty in the scale and shape pa-
rameter, that is, without knowing the probability 
distribution and using a Bayesian approach. 
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