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Abstract 
 

Semi-Markov decision processes theory delivers the methods which allow to control the operation pro-
cesses of the systems. The infinite duration semi-Markov decision processes are presented in the chapter. 
The gain maximization problem of three tasks operation processes subject to constraint of an availability 
of the semi-Markov reliability model is discussed. The problem is transformed on some linear program-
ing maximization problem. 
 
1. Introduction  
 

In many articles and books we can find applica-
tions of semi-Markov (SM) processes in the relia-
bility theory. The most interesting and important 
books on these issues include monographs (Ber-
naciak, 2005; Howard, 1971; Jewell, 1963; Lim-
nios & Oprisan, 2001). The semi-Markov deci-
sion processes theory delivers methods which 
give the opportunity to control an operation pro-
cesses of the systems. We investigate the infinite 
duration SM decision processes. It was developed 
by Jewell (Jewell, 1963), Howard (Howard, 1960, 
1964, 1971), Main and Osaki (Main & Osaki, 
1970) and Gercbakh (Gercbakh, 1969). Those 
processes are also discussed in (Feinberg, 1994; 
Grabski, 2015, 2018; Korolyuk & Turbin, 1976) 
and (Boussemart & Limnios, 2004). The gain 
maximization problem subject to an availability 
constraint for a semi-Markov model of the opera-
tion in the reliability aspect is discussed in those 
papers. The problem is transformed on some max-
imization problem of linear programing. Very im-
portant and original scientific work concerning 
discussed here problem were published by 

(Boussemart et al., 2001; Boussemart & Limnios, 
2004; Beutler & Ross, 1986) and also by (Fein-
berg,1994). It should be added that a similar prob-
lem but for the two task operation was presented 
at the ICNAAM 2018 conference and the ex-
tended abstract is published in the AIP Confer-
ence Proceedings (Grabski, 2018). The similar 
problem for the two task operation as a full paper 
is also published in AMSDA 2019 Conference 
Proceedings (Grabski, 2021). 
 
2. Necessary concepts and properties from 

semi-Markov processes theory 
 

We start from a brief presentation of concepts and 
properties of the semi-Markov processes theory 
that are essential in the chapter. 
A stochastic { ( ):  ≥ 0} process with a finite or 
countable state space  , piecewise constant and 
right continuous trajectory is said to be a semi-
Markov process if there exist non-negative ran-
dom variables   = 0 <   <   < ⋯ such that  
  (    −   ≤  ,  (    ) =   | (  ) 
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=  ,   −     ≤   , … ,   −   ≤   ) 
 =  (    −   ≤  , (    ) =   |  (  ) =  ),  
  ≥ 0,  = 1,2, … . (1) 
 
Two dimensional sequence  
       −   , (    ) : = 0,1,2, …    
 
is said to be the Markov renewal process associ-
ated with the semi-Markov process.  
The transition probabilities 
    ( ) =  (    −   ≤  , (    )  
 
=   |  (  ) =  ),  ≥ 0,  (2) 
 
form a matrix  
  ( ) = [   ( ):  ,  ∈  ], (3) 
 
that is called the semi-Markov kernel. 
To determine semi-Markov process as a model we 
have to define an initial distribution and all ele-
ments of its kernel. 
It is easy to notice that the sequence { (  ):    =0,1, … } is a homogeneous Markov chain with 
transition probabilities 
    =  ( (    ) =   |  (  ) =  ) = lim →    ( ).
 (4) 
 
This random sequence is called an embedded 
Markov chain in the semi-Markov process. 
The function  
   ( ) =  (   ≤  ) =  
  (    −    ≤   |  (  ) =  ) = ∑    ( ) ∈  (5) 
 
is the CDF distribution of a waiting time    denot-
ing the time spent in state   when the successor 
state is unknown, the function 
    ( ) = 
  (    −    ≤   | (  ) =  , (    ) =  )  
 =    ( )    (6) 

is the CDF of a random variable     that is called 
a holding time of a state  , if the next state will be  . It is easy to see that  
    ( ) =       ( ). (7) 
 
A set   represents the reliability states of the sys-
tem. This set may be divided into two subset    
and    where the first contains the “up” states and 
the second one contains the failed states (“down” 
states). Those subset form a partition, i.e.,  =   ∪    and   ∩   = ∅. 
Suppose that   ∈    is an initial state of the pro-
cess. Conditional reliability functions of a system 
are defined by the rule 
   ( ) =  (∀ ∈ [0,  ],  ( ) ∈   |  (0) =  ),  
   ∈   . (8) 
 
The conditional reliability functions satisfy sys-
tem of integral equations  
   ( ) = 1 −   ( ) + ∑ ∫   ( −  )    ( )    ∈    
   ∈   . (9) 
 
Passing to the Laplace transforms, we obtain 
    ( ) =   −    ( ) + ∑    ( )    ( ),  ∈     ∈   , 
 (10) 
 
where 
    ( ) = ∫        ( )  . (11) 
 
The conditional means time to failure of the sys-
tem can be calculated using equalities  
  (  ) = lim →     ( ),  > 0,   ∈   . (12) 
 
The matrix form of the equation system (9) is 
    −     ( ) ⋅   ( ) =     ( ), (13) 
 
where 
   ( ) = [   ( ):   ∈   ]  , 
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    ( ) =    −    ( ) ∶  ∈     
 (14) 

 
are one-column matrices and 
     ( ) = [    ( ):  ,   ∈   ], 
  = [   :   ,   ∈   ] (15) 
 
are square matrices. 
A random variable     ,   ∈   , denoting a first 
passage time from the state  ∈    to the subset    
designates time to failure of a system with initial 
state  ∈   . A cumulative distribution function of 
this random variables is denoted as 
     ( ) =       ≤   ,   ∈   ,  ≥ 0. (16) 
 
Between functions   ( ) and     ( ),   ∈   ,   ≥ 0, we have equalities 
   ( ) = 1 −     ( ),   ∈    ,  ≥ 0. (17) 
 
Under assumptions that are satisfied in considered 
here problem, the cumulative distribution func-
tions are proper and they are the only solution of 
the system equations  
     ( ) = ∑    ( ) ∈      
 +∑ ∫     ( −  )    ∈      ( ),  
  ∈   ,  ≥ 0. (18) 
 
Passing to the Laplace-Stieltjes (L-S) transforms, 
we obtain 
      ( ) = ∑     ( ) + ∈  ∑     ( )  ∈       ( ),   
   ∈   ,  (19) 
 
system of linear equation, where L-S transforms      ( ),   ∈   , are unknown. 
From (17) it follows that  
    ( ) =   −      ( ),   ∈   . (20) 
 
The system of linear equation (19) is equivalent to 
a matrix equation 
 

[  −     ( )] ⋅     ( ) =     ( ), (21) 
 
where 
     ( ) = [     ( ):   ,  ∈   ] , 
     ( ) =       ( ):  ∈     , 
     ( ) =  ∑     ( ):  ∈   ∈     . 
 
From Theorem 3.2 (Boussemart & Limnios, 
2004) it follows that there exist expectations       ,  ∈   , and they are unique solutions of 
the linear system of equations that is equivalent of 
the matrix equation  
    −     ⋅    =     , (22) 
 
where  
    = [   :   ,   ∈   ],  
      = [ (  ):   ∈   ],  
     =         :   ∈     . 
 
3. Semi-Markov decision process 
 

The concept of Semi-Markov decision process 
(SMDP) is presented in many books and also in 
monograph (Grabski, 2015). Notations and defi-
nitions come from (Grabski, 2015).  
The maximization problem considered in the 
chapter may be briefly described as finding a strat-
egy  ∈   ×   × … ×    that maximized  
the criterion function  ( ) subject to availability 
constraint  ( ) >  , where  ∈ (0,1],   = {1,2, … , } is a state set of considered semi-
Markov decision process,   ,  ∈  , are sets of de-
cisions and  ( ) denotes the gain per unit of time 
as a result of a long operation system. 
 
4. Decision semi-Markov model of operation 
 

4.1. Description and assumption   
 

The working object (device) can perform three 
types of tasks 1, 2 and 3. A duration of r type of a 
task is a non-negative random variable   ,   = 1,2,3. The working object may be damaged. 
A time to failure of the object executing a task   
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is a non-negative random variable   ,  = 1,2,3, 
with a probability density function    ( ),  ≥ 0,  = 1,2,3.  
A repair time of the object performing task   is a 
non-negative random variable   ,  = 1,2,3, 
governed by a probability density function    ( ),  ≥ 0,  = 1,2,3. Each repair is a renewal of the 
object. After the repair is completed, the object 
starts execution of the task 1 with a probability    , the task 2 with the     and the task 3 with the 
probability     
    +    +    = 1,  = 1,2,3. 
 
A duration of an inspection after a task r is a non-
negative random variable   , having a PDF    ( ), ≥ 0,  = 1,2,3. After the inspection is 
completed, the object starts execution of the task 
1 with the probability    , the task 2 with 
probability     and the task 3 with the probability     
    +    +    = 1,  = 1,2,3. 
 
Furthermore we assume that all random variables 
and their copies are independent and they have the 
finite and positive second moments.  
 
4.2. Model construction 
 

We start from introducing operation states of the 
process: 
1 – an object repair after failure during executing 
of the task 1; 
2 – an object repair after failure during executing 
of the task 2; 
3 – an object repair after failure during executing 
of the task 3; 
4 – an object operation, performing of the task 1; 
5 – an object operation, performing of the task 2; 
6 – an object operation, performing of the task 3; 
7 – checking the object technical condition and 
renewal after the task 1 executing; 
8 – checking the object technical condition and 
renewal after the task 2 executing; 
9 – checking the object technical condition and 
renewal after the task 3 executing. 
To construct a decision stochastic process we 
have to determine sets of decisions (alternatives) 
for every state. 
D1: 1 – a normal repair after failure during 

executing of the task 1, 
2 – an expencive repair after failure during 
executing of the  task 1;  

D2: 1 – a normal repair after failure during 
executing of the task 2, 
2 – an expencive repair after failure during 
executing of the task 2;  
D3: 1 – a normal repair after failure during 
executing of the task 3, 
2 – an expencive repair after failure during 
executing the task 3; 

D4: 1 – a normal profit per unit of time for the task 
1 executing, 
2 – a higher profit per unit of time for the task 
1 executing; 

D5: 1 – a normal profit per unit of time for the task 
2 executing, 
2 – a higher profit per unit of time for the task 
2 executing; 

D6: 1 – a normal profit per unit of time for the task 
3 executing, 
2 – a higher profit per unit of time for the task 
3 executing; 

D7: 1 – a normal inspection after performingof the 
task 1, 
2 – an expencive inspection after performing 
of the task 1;  

D8: 1 – a normal inspection after performing of the 
task 2, 
2 – an expencive inspection after performing 
of the task 2;  

D9: 1 – a normal inspection after performing of the 
task 3, 
2 – an expencive inspection after performing 
of the task 3. 

The possible state changes of the process are 
shown in Figure 1. 
 

 
 
Figure 1. Possible state changes of the operation 
process. 

1

4

5

6

2

3

78

9



Maximization problem of three tasks operation process subject  
to constraint of availability in semi-Markov reliability model 

 
133 

 

A model of an object operation is a decision semi-
Markov process with a state space  = {1,2, … ,9}, sets of actions (decisions) D1, 
D2,…, D9. This process is defined by a family of 

functions matrix that is called a kernel of the 
decision semi-Markov process. The kernel is 
determined by the matrix: 
 

 

 ( )( ) =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 0 0 0    ( )( )    ( )( )    ( )( ) 0 0 00 0 0    ( )( )    ( )( )    ( )( ) 0 0 00 0 0    ( )( )    ( )( )    ( )( ) 0 0 0   ( )( ) 0 0 0 0 0    ( )( ) 0 00    ( )( ) 0 0 0 0 0    ( )( ) 00 0    ( )( ) 0 0 0 0 0    ( )( )0 0 0    ( )( )    ( )( )    ( )( ) 0 0 00 0 0    ( )( )    ( )( )    ( )( ) 0 0 00 0 0    ( )( )    ( )( )    ( )( ) 0 0 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
 

  ≥ 0.                    (23) 
 
The model is constructed if all kernel elements are 
determined. According to assumptions we 
calculate elements of the matrix  ( )( ),  ≥ 0,  
    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),     ( )( ) =    ( )   ( )( ),      ( )( ) = ∫   1 −    ( )( )     ( )( ) ,     ( )( ) = ∫   1 −    ( )( )     ( )( ),  Q  ( )( ) = ∫   1 −    ( )( )     ( )( ), Q  ( )( ) = ∫  [1 −    ( )( )]    ( )( ), Q  ( )( ) = ∫   1 −    ( )( )     ( )( ),  Q  ( )( ) = ∫  [1 −    ( )( )]    ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),     ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ),    ( )( ) =    ( )   ( )( ).  (24) 
 

The transition probability matrix of the embedded 
Markov chain { (  ): ∈ ℕ } we obtain using 
equality 
    ( ) = lim →    ( )( ). (25) 
 
The below matrix represents the transition proba-
bility matrix of the embedded Markov chain 
  ( ) =  
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 0 0 0    ( )    ( )    ( ) 0 0 00 0 0    ( )    ( )    ( ) 0 0 00 0 0    ( )    ( )    ( ) 0 0 0   ( ) 0 0 0 0 0    ( ) 0 00    ( ) 0 0 0 0 0    ( ) 00 0    ( ) 0 0 0 0 0    ( )0 0 0    ( )    ( )    ( ) 0 0 00 0 0    ( )    ( )    ( ) 0 0 00 0 0    ( )    ( )    ( ) 0 0 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

 (26) 
 
From (24) and (25) we obtain 
    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) =    ,    ( ) = ∫   1 −    ( )( )     ( )( ) , 
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   ( ) = ∫  [1 −    ( )( )]    ( )( ),    ( ) = ∫   1 −    ( )( )     ( )( ),    ( ) = ∫  [1 −    ( )( )]    ( )( ),    ( ) = ∫   1 −    ( )( )     ( )( ),    ( ) = ∫  [1 −    ( )( )]    ( )( ),    ( ) =    ,    ( ) =    ,    ( ) =    ,     ( ) =    ,    ( ) =    ,    ( ) =    ,     ( ) =    ,    ( ) =    ,    ( ) =    . (27) 
 
5. Linear programing method 
 

Mine and Osaki (Mine & Osaki, 1970) presented 
linear programming method for solving the prob-
lem of optimization without additional con-
straints. The problem of optimization with an ob-
ject availability constraints is investigated in this 
chapter. 
Stationary probabilities   ( ),  ∈  , for every de-
cision  ∈    satisfy the following linear system 
of equations 
 ∑ ∈   ( )   ( ) =   ( ), ∑ ∈   ( ) = 1,  
   ( ) > 0,  ∈  , (28) 
 
where 
    ( ) = lim →    ( )( ),  ,  ∈  . (29) 
 
Let   ( ) be a probability that in the state  ∈   has 
been taken decision  ∈   . It is obvious that  
 ∑   ( ) = 1, 0 ≤   ( ) ≤ 1, ∈   ∈  .  (30) 
 
The criterion function and constraints can be writ-
ten as 
  ( ) = ∑ ∑   ( )  ( )  ( )  ( )  ∈   ∈ ∑ ∑   ( )  ( )  ( ) ∈   ∈ , (31) 

  ( ) = ∑ ∑   ( )  ( )  ( ) ∈   ∈  ∑ ∑   ( )  ( )  ( ) ∈   ∈ >  , (32) 

 
where   ( ) is a mean value of the waiting time in 

state   under decision   and   ( ) is a reward re-
ceived by staying at a state   per one unit of time. 
Finally, we obtain the following problem of linear 
programming:  
Find stationary strategy   maximizing the func-
tion 
  ( ) = ∑ ∑    ( )  ( ) ∈   ∈  (33) 
 
under constraints 
 ∑ ∑   ( ) ∈   ∈    ( ) ≥  , (34) 
 
(or ∑ ∑   ( ) ∈   ∈    ( ) ≤ 1 −  ,   =  −   )
 (35) 
 ∑   ( ) −  ∑ ∑     ( )   ( ) ∈   ∈  ∈  = 0,  (36) 
 ∑ ∑    ( )   ( ) = 1, ∈   ∈  (37) 
   ( ) =   ( )  ( )∑ ∑   ( )  ( )  ( ) ∈   ∈ ≥ 0,  (38) 

  ∈  ,  ∈   . 
 
The optimal stationary strategy consists of 
decisions determined by probabilities  
   ( ) =    ( )∑   ( )     . (39) 

 
In the model the set of “up” states is   = {4, 5,6} 
and the “down” states set is   =  −   ={1,2,3,7,8,9}. 
 
6. Numerical example 
 

Decision variables: 
   ( ),   ( ),  ( ),   ( ),   ( ),   ( ),   ( ),  ( ),  ( ),   ( ),   ( ),   ( ),   ( ),   ( ),  ( ),   ( ),   ( ),   ( ). 
 
Known parameters: 
   ( ),   ( ),  ( ),   ( ),   ( ),   ( ),   ( ),  ( ),  ( ),   ( ),   ( ),   ( ),   ( ),   ( ),  ( ),   ( ),   ( ),   ( ). 
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  ( ),   ( ),  ( ),   ( ),   ( ),   ( ),   ( ),   ( ),    ( ),   ( ),   ( ),   ( ),   ( ),   ( ),   ( ),   ( ),   ( ),   ( ). 
 
In this case the formulas (33)–(38) take the fol-
lowing form. 
Criterion function: 
  ( ) =   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ). 
 
Constraints: 
  = 1:   ( ) +   ( ) −     ( )  ( ) +    ( )  ( ) = 0,  
  = 2:   ( ) +   ( ) −     ( )  ( ) +    ( )  ( ) = 0,  
  = 3:   ( ) +   ( ) −      ( )  ( ) +    ( )  ( ) = 0,  
  = 4:    ( ) +   ( ) − (    ( )  ( ) +    ( )  ( )  +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( )+    ( )  ( )) = 0, 
  = 5:    ( ) +   ( ) − (    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( )+    ( )  ( )) = 0, 
  = 6:   ( ) +   ( ) − (    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( ) +    ( )  ( ) +    ( )   ( ) +    ( )  ( ) +    ( )  ( )+    ( )  ( )) = 0, 
 

 = 7:    ( ) +   ( ) −     ( )  ( ) +    ( )  ( ) = 0, 
  = 8:    ( ) +   ( ) −     ( )  ( ) +    ( )  ( ) = 0, 
  = 9:    ( ) +   ( ) −     ( )  ( ) +    ( )  ( ) = 0, 
   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( )  +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) = 1, 
   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +   ( )  ( ) +  ( )  ( ) +   ( )  ( ) ≥ α, 
   ( ) ≥ 0,  = 1,2, … ,9, = 1,2. 
 
We assume  = 0.742. 
 
The gain parameters and transition probabilities of 
the semi-Markov decision process for this exam-
ple are given in Tables 1–2. 
 
Table 1. The gain parameters 

 

 
 

State   Decision k   ( )   ( )   ( ) 
1 1 22.5 -150 -3375 

2 24.0 -180 -4320 

2 1 20.5 -150 -3075 
2 22.5 -180 -4050 

3 1 20 -150 -3000 
2 22.5 -180 -4050 

4 1 72 1200 86400 
2 66 1600 105600 

5 1 56 1250 95000 
2 52 1400 100800 

6 1 48 1200 93600 
2 54 148 106560 

7 1 5.2 -150 -780 
2 6.8 -220 -1496 

8 1 7.2 -120 -864 
2 6.6 -135 -891 

9 1 6.0 -128 -768 
2 6.5 -140 -910 
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Table 2. The transition probabilities of the semi-Markov decision process 
 

State   Decision      ( )    ( )    ( )    ( )    ( )    ( )    ( )    ( )    ( ) 
1 1 0 0 0 0.42 0.30 0.28 0 0 0 

2 0 0 0 0.44 0.28 0.28 0 0 0 

2 1 0 0 0 0.38 0.40 0.22 0 0 0 
2 0 0 0 0.40 0.30 0.30 0 0 0 

3 1 0 0 0 0.29 0.33 0.38 0 0 0 
2 0 0 0 0.32 0.33 0.35 0 0 0 

4 1 0.97 0 0 0 0 0 0.03 0 0 
2 0.99 0 0 0 0 0 0.01 0 0 

5 1 0 0.96 0 0 0 0 0 0.04 0 
2 0 0.98 0 0 0 0 0 0.02 0 

6 1 0 0 0.97 0 0 0 0 0 0.03 
2 0 0 0.99 0 0 0 0 0 0.01 

7 1 0 0 0 0.41 0.31 0.28 0 0 0 
2 0 0 0 0.43 0.29 0.28 0 0 0 

8 1 0 0 0 0.37 0.41 0.22 0 0 0 
2 0 0 0 0.42 0.30 0.28 0 0 0 

9 1 0 0 0 0.29 0.33 0.38 0 0 0 
2 0 0 0 0.32 0.33 0.35 0 0 0 

 
Using MATHEMATICA computer system and 
the data from Tables 1–2 we obtain solution of the 
problem: 
   ( ) = 0.00445005,   ( ) = 0;   ( ) = 0.00416844,   ( ) = 0;   ( ) = 0.00354532,   ( ) = 0;   ( ) = 0.00441825,   ( ) = 0.000166008;   ( ) = 0,   ( ) = 0.00425351;   ( ) = 0.000332827,   ( ) = 0.00325502;   ( ) = 0.000134208,   ( ) = 0;   ( ) = 0,   ( ) = 0.0000850701;   ( ) = 0.0000425351,   ( ) = 0. 
 
From (39) we obtain probabilities  
   ( ) = 1,   ( ) =  0;   ( ) =  1,   ( ) =  0;   ( ) =  1,   ( ) =  0;   ( ) =  0.963787378,   ( ) =  0.036212622;    ( ) =  0,   ( ) = 1;   ( ) =  0.092765104,   ( ) =  0.907234896;   ( ) =  1,   ( ) =  0;   ( ) =  0,   ( ) =  1;    ( ) = 1,   ( ) =  0. 
 
The vector of the optimal action in each step is 

 = (1, 1, 1,   , 2,   , 1,2,1), 
 
where  
   =   1 with probability 0.963787378 2 with probability 0.036212622  
 
and  
   =  1 with probability 0.092765104 2 with probability 0.907234896.  
 
In MATHEMATICA computer system, linear 
programing is determined only for the minimum 
problem. The minimum of the expected cost for 
one step of the operation in this case is 
  ( ) = 3375 ⋅ 0.00445005 + 4320 ⋅ 0.00416844 + 3075 ⋅ 0.00354532 + 4050 ⋅ 0.00441825 + 3000 ⋅ 0.036212622 + 4050 ⋅ 0.00354532  − 86400 ⋅ 0.963787378 − 10560 ⋅ 0.036212622  − 95000 ⋅ 0.036212622 − 100800 ⋅ 0.00425351  − 93600 ⋅ 0.092765104 − 106560 ⋅  0.907234896  + 780 ⋅ 0.000134208 + 1496 ⋅ 0.000134208 + 864 ⋅  0.0000850701 + 891 ⋅ 0.000134208 + 768 ⋅ 0.0000850701 + 910 ⋅ 0.0000425351 = −10550.7. 
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The maximum of the expected gain for one step 
of the operation in this case is expressed by a 
number opposite to the corresponding minimum 
expected cost  
  ( ) = −  ( ) = 10550.7. 
 
For availability parameter  = 0.743 no solution 
subject to above constraints. 
It should be mentioned that the Laplace transform 
of reliability function can be found for an optimal 
stationary strategy. A matrix equation (13) gives 
this possiblity.  
Consider the model with the set of “up” states   = {4,5,6, 7,8,9} and the set of “down” states   =  −   = {1, 2 ,3}. For simplicity we 
accept  =  (1, 1, 1, 1, 2, 2, 1, 2, 1).  
From Theorem 3.2 (Boussemart & Limnios, 
2004) it follows that there exist expectations        ,   ∈   , and they are unique solutions of 
the linear system of equations that are equivalent 
to the matrix equation  
    −    ( ) ⋅    =       
 
where 
 

   ( ) =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 0 0    ( ) 0 00 0 0 0    ( ) 00 0 0 0 0    ( )   ( )    ( )    ( ) 0 0 0   ( )    ( )    ( ) 0 0 0   ( )    ( )    ( ) 0 0 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
  

     ( ) =        ( ) :   ∈     , 
     =      ( ) :   ∈    =    ( ):   ∈     
 = [72, 52, 54, 5.2, 6.6, 6.0]  [h].  
 
Then, after substituting accordingly numbers, 
     ( ) =    −    ( )   ⋅       
 = [74.022, 53.38, 54.659, 67.401,   

 69.008, 65.852] [h]. 

Under asumption that initial state is 4, the 
conditional expected value 
        = 74.022 [h]  
 
means expectation of the time to failure of the 
operation process. 
 
7. Conclusion 
 

The semi-Markov decision processes theory 
provides the possibility to formulate and solve the 
optimization problems that can be modelled by 
SM processes. In such kind of problems we 
choose the process that brings the largest profit or 
smallest cost. If the semi-Markov process 
describing the evolution of the real system in a 
long time satisfies the assumptions of the limit 
theorem, we can use the results of the infinite du-
ration SM decision processes theory. An 
algorithm that allows finding the best strategy is 
equivalent to the some problem of linear 
programing. The gain optimization problem  
subject to the availability constraint for the semi-
Markov model of operation is considered and 
solved. 
From Theorem 5.5 (Mine & Osaki, 1970) for the 
problem without additional constraints it follows, 
that for every  ∈   exists exactly one  ∈    such 
that   ( ) > 0. For the gain optimization problem 
subject to constraint of availability this theorem is 
not true. The optimal stationary strategy can 
contain the vectors with mixed decisions. This 
fact extends the previously known results. 
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