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Abstract  
 

The chapter presents an approach based on basic notions issued from the graph theory and from the 
system reliability theory. The approach seeks to describe the transitions in the connectivity state of 
non-directional graphs induced by systemic losses of nodes and edges. Each component loss (node or 
edge) represents a transition and results in a connectivity degradation. Some of the transitions are 
classified as non-critical while others are critical. Degradations are measured using the notion of top-
ological graph diameter issued from the graph theory. The critical transition notion is issued from the 
system reliability theory. The approach determines the degraded graph diameter corresponding to 
each possible transition and subsequently the criticality of the transition. The criticality threshold is 
determined by the highest acceptable connectivity order which is a function of the degraded graph 
diameter. A network with 9 nodes and 15 edges is used as an academic study case to illustrate the ap-
plicability of the approach. Nodes are supposed to be identical, as well as the edges. All network com-
ponents (nodes and edges) are mutually independent. These precedent hypotheses are intended to 
evacuate all sources of numerical useless complexity. As our main objective is to highlight the original 
characteristic of the proposed approach.  
 
1. Introduction  
 

The chapter presents an approach to describe the 
transitions in the global connectivity state of 
non-directional graphs induced by systemic loss-
es of nodes and edges. Systemic component loss-
es exclude all losses induced by man or natural 
hazards. Component losses (node or edge) result 
in degradations in the network overall connectiv-
ity. Network transitions from one connectivity 
level to another can be determined. Some of 
these transitions are classified as non-critical 
while others are critical. The topological graph 
diameter   . Is a natural candidate to measure 
network connectivity and the criticality of the 
connectivity transitions. Then the proposed ap-
proach determines the graph diameter corre-
sponding to each possible transition.  
The criticality is determined by a threshold de-
pendent on the highest acceptable diameter of a 

degraded graph. 
A network with 9 nodes and 15 edges is used as 
an academic study case to illustrate the applica-
bility of the approach. In this study case, nodes 
are identical, as well as the edges. Besides, nodes 
and edges are mutually independent. These 
working hypotheses aim at evacuating all sources 
of numerical useless complexity. The chapter’s 
main objective is to highlight the original charac-
teristic of the proposed approach. 
The two main streams describing network con-
nectivity are briefly presented in Section 2, 
known as: the topological and the algebraic con-
nectivity. In Section 3, the Binary Topological 
Model (BTM) is presented. It provides the nu-
merical tool to determine the graph diameter at 
different connectivity states: degraded or not. In 
Section 4, the academic case study is presented 
as well as the iterative procedure to determine 
the graph diameter. The criticality is defined and 
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the critical states are identified. The probabilistic 
dynamic model to determine the connectivity 
state of the network is established, as well. Final-
ly, some numerical results are illustrated. Sec-
tion 5 ends the chapter by a synthetic presenta-
tion of the main features of the presented ap-
proach.  
 
2. Network connectivity  
 

Network connectivity modelling and analysis is 
an issue that is receiving strong intention from 
academia, specialised research institutions, in-
dustry, and utilities. This multiplicity of interests 
gave rise to a large amount of literature of all 
kinds of complexity and application. It varies 
from purely theoretically oriented to standardisa-
tion and regulation passing by system engineer-
ing R&D activities. No one connectivity model 
or connectivity assessment methodology could 
satisfy that wide range of interests characterising 
the place of the networks in our modern societies 
(Rose, 2015). One can schematically distinguish 
two main streams in modelling the networks 
connectivity: conceptually oriented or engineer-
ing oriented. The two streams are not opposite to 
each other but rather complementary. 
In the conceptual stream, mathematical 
knowledge and assets are the most required. The 
graph theory is by so far, un excellent underline 
asset in that stream. The models that can be ex-
pected from that stream are very often descrip-
tive but global. 
The engineering stream does rather require much 
more applied mathematics and good insight of 
networks operational conditions and performance 
measure in many sectors, such as: communica-
tion, transport, energy transmission, pipelines, 
etc. The models that can be expected from that 
stream are schematically classified in two sub-
classes: systemic and qualitative or analytic and 
quantitative. 
Nevertheless, network resilience modelling pre-
sents even much more challenging concerns. On 
one hand, what does really resilience of a system 
mean? And specifically, what could the resili-
ence of a network really mean?  
The author thinks that a solution may come up if 
we can develop a meaningful and measurable 
concept describing through a performance dy-
namic model the network performance. 
But above all, can one develop a network per-

formance dynamic model without modelling the 
network global connectivity?  
If not! And it is not from our standpoint!  
Can one introduce time in some way to describe 
dynamically the global connectivity, given that 
resilience cannot be but a dynamic notion? In 
fact, the connectivity notion as introduced in the 
graph theory is static. 
We will briefly present the connectivity as de-
scribed by the graph theory and then be proceed-
ing to a quick presentation of the Binary Topo-
logical Model – BTM before proposing the con-
nectivity dynamic modelling approach. 
 
2.1. Graph theory and connectivity 
 

The use of graphs to represent and solve mathe-
matical problems can be tracked down to the 
Swiss mathematician Leonhard Euler. In 1736, 
L. Euler published the solution to the Königsberg 
bridge problem (how to traverse each of the 
bridges of the Prussian city of Königsberg only 
once). However, we are still far from talking 
about the graph theory – GT as proposed by Kö-
nig. In his treatise, König (König, 1936) treated 
four selected recreational mathematical prob-
lems: Königsberg bridges, a problem of describ-
ing polygons, a problem of configuring domi-
noes and the problem of circulating in mazes. 
König was in fact investigating on the recrea-
tional problems, (Mizuno, 2011), not more!  
The GT provides certainly the most consistent 
and coherent formal frame to describe, character-
ise, and classify networks. Yet, the concept of 
connectivity does not exist, strictly speaking, in 
the GT. However, the graph diameter is a fun-
damental concept of the GT that many research-
ers and engineers consented to use as a measure 
of the graph global connectivity.  
Why not? 
Following the notations of the GT, a graph G is 
composed of N nodes (vertices) connected 
through a set of E edges. Each couple of nodes in 
the graph may be connected or not. The binary 
square matrix that describes the node-to-node  
(N-N) connectivity is called the adjacent matrix 
A. The matrix’s elements are binary: 1 for direct-
ly N-N connected otherwise null. We call it a 1st 
order connectivity. Obviously, not all the couples 
of nodes are directly connected in a given graph. 
Still, they can be connected through paths com-
posed of more than one edge. We call that higher 



  
Network connectivity dynamic modelling 

 
119 

 

order N-N connectivity. 
There are many useful metrics to measure graph 
connectivity. Among the well-known are the 
degree distribution (Barabasi, 1999), the charac-
teristic path length (Watts, 1998), the clustering 
coefficient (Albert, 2002) and the graph diameter 
(König, 1936; Wilson, 1998; Bondy, 2008). We 
have chosen to use the graph diameter. A graph 
diameter is the longest of the shortest N-N paths 
in a graph. The issue is that the graph diameter is 
a static notion by conception and cannot directly 
be described by a dynamic model.  
However, does exist any contradiction between 
this latest claim and the important R&D activi-
ties on dynamic graph modelling using spectral 
analysis and Laplacian matrix eigenvalues, since 
decades? Let us, then put some light on this and 
get closer to the: graph spectra and Laplacian 
matrix. 
 
2.2. Graph spectra and Laplacian matrix 
 

The graph spectra and the Laplacian matrix were 
developed in response to a specific problem in 
chemistry (the application in a theory of unsatu-
rated conjugated hydrocarbons known as the 
Hückel molecular orbital theory (Hükel, 1931). 
That is also confirmed by Cvetković et al. 
(Cvetković et al., 1979) who is one of the pio-
neers having formalised the graph spectra con-
cept and the Laplacian matrix spectra analysis in 
its modern form. That specific need in chemistry 
required the introduction of linear algebra in or-
der to investigate the characteristics of the adja-
cent matrix and gave birth to the concepts: La-
placian matrices and eigenvalues. Strictly speak-
ing, neither the Laplacian matrix nor the eigen 
values are fundamental concepts of the GT.  
The eigenvalues of the Laplacian matrix A are 
usually denoted by nλλλλ ,...,,, 321 . These eigen-
values are also called the spectra of the graph G 
and are often denoted in the increasing order: 

nλλλλ <<<< ...321 . The largest eigenvalue nλ  
is called the index of the graph, (Cvetković, 
2000, 2010), and the spectral radius of the graph 
G, )(Gρ , as well. This eigenvalue has received 
the highest attention in this context, since the 
number of walks of length k is, approximately, 
proportional to )(Gkρ  . The least smallest ei-
genvalue 2λ  has attractive properties, as well 
(Mohar, 1991; Cvetković, 2011; Van Mieghem, 

2011). It receives a specific interest because of 
its relation to numerous graph invariants includ-
ing connectivity, expanding properties, isoperi-
metric number, maximum cut, independence 
number, genus, diameter, mean distance, and 
bandwidth-type parameters of a graph (Mohar, 
1991). Fiedler (Fiedler, 1973) has investigated 
several of their properties. This eigenvalue is 
known as the algebraic connectivity of a graph.  
Notice the emergence of the term connectivity. 
Underling the definition as algebraic connectivi-
ty is obviously to distinguish this connectivity 
from the “topological connectivity” consentingly 
measured using the graph diameter   .  
The highest success of the Laplacian matrix and 
the graph spectra analyse in systems engineering 
is in the field of the computer networks. This is 
because of the important role that the highest 
eigenvalue nλ  plays in modelling virus propaga-
tion in computer networks, (Cvetković, 2011; 
Van Mieghem, 2011). The smaller the highest 
eigenvalue, the higher is the robustness of the 
network against the spread of viruses. In fact, it 
was shown by Wang Y et al. (Wang Y et al., 
2003) that the epidemic threshold in spreading 
viruses is proportional to 1/ 2λ  . 
The pioneering work of Cvetković et al. 
(Cvetković et al., 1979) has definitively given to 
that connectivity its full algebraic nature. This 
algebraic nature rendered the algebraic connec-
tivity extremely popular in fields such as: mem-
brane vibration modelling, dimer problem (ther-
modynamic properties of the diatomic molecules 
adsorbed on the surface of a crystal) and random 
walks of various kinds in a lattice graph. A com-
plete list of problems in physics, chemistry, and 
computer sciences where the graph spectra ap-
proach was of great usefulness is given in 
(Cvetković, 2000). Many of these applications 
are dynamic. This wide success gave a strong 
authority to that notion of Algebraic connectivity 
that many engineers and researchers struggling to 
transpose to the network resilience dynamic 
modelling.  
Does exist any recent development in the alge-
braic connectivity that may indicate a universal 
transposability to all types of network application 
and use, including network resilience?  
Yes, one excellent example is the effective graph 
resistance (Ellens, 2011; Klein, 1993). As all the 
algebraic approaches, it investigates algebraic 
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connectivity. It can be extended to model resili-
ence if it integrates the connectivity states transi-
tion dynamics.  
 
2.3. Topological vs algebraic connectivity 
 

The determination of the algebraic connectivity 
is based on the use of linear algebra concepts and 
tools. Calculating the eigenvalues for weighted 
and binary adjacent matrices of large size graphs 
is a source of many awesome numerical prob-
lems. Adding to that, the algebraic connectivity 
is a fuzzy definition, at least from engineering 
systems standpoint. The same can be told regard-
ing the eigen values.  
Switching to the topological connectivity which 
is simply measured by the graph diameter   . 
allow us to get rid of these fuzzy definitions of 
the algebraic connectivity in favour of a physical 
definition based on the number of edges linking 
each couple of nodes.  
But, if we remove linear algebra contribution 
(Laplacian matrix and eigenvalues), how will the 
BTM introduce the dynamic aspect?  
 
3. Network binary topological model  
 

Following the GT, the elements of the adjacency 
matrix – A  are binary with value: 1 for directly 
connected couples of nodes otherwise null. The 
Binary Topological Model (BTM) refers to it as 
an adjacency matrix of 1st order, denoted by   . 
The BTM extends the notion of the adjacency 
matrix to higher orders of connectivity. The 
BTM uses the notation    for the adjacency ma-
trix of the     order and whose binary elements 
are      with a value equal to 1 if the couple ( ,  ) 
is connected through n-edges otherwise null 
(Eid, 2017, Eid et al., 2012). The adjacency matri-
ces of higher orders are determined as following.  
First, one constructs the matrix      defined as: 
     =    ∙   . (1) 
 
Then, one constructs the adjacency matrix      
and its elements      as following: 
      =   0 if  =  0 if     = 01 if     > 0. (2) 

Then, one keeps iterating between equations (1) 

and (2) until all the elements      become equal to 
unity except the diagonal ones. That means when 
each couple of nodes in the graph is connected. 
The corresponding order   will then be called the 
nominal connectivity order – NCO. The BTM 
uses the NCO as a measure of the network con-
nectivity.  
The NCO is the minimal number of connections 
required such as each node in the network in 
connected with all the others. It is the minimal 
dimension of the topological space in which each 
node sees all the others. As if they were distrib-
uted on the same spherical surface in an  -
dimensional space. Obviously, the NCO is sig-
nificantly different from the algebraic graph di-
ameter but the closest to the classical graph di-
ameter   . 
The determination of the NCO or the graph di-
ameter    is immediate and does not require any 
use of advanced linear algebra concepts such as 
the eigenvalues. We just use iterative matrix 
products with no use of any determinant analysis.  
Still, we should introduce another concept which 
is the connectivity states and the transitions. This 
is the last step before stepping forward to the 
dynamic modelling.  
 
3.1. Connectivity states and transitions 
 

The NCO characterises the network nominal 
operational state as it has been designed by the 
designer to achieve a required performance level. 
This is the operational state which is accepted by 
the operators and that has the safety/security lev-
el required by the competent authorities. The 
NCO is a nominal and global characteristic 
measure.  
Any failure of a node or an edge produces a deg-
radation in the network global connectivity. It 
impacts negatively on the network performance 
level. We may talk about performances degrada-
tion. Local failures (nodes or edges) will imme-
diately produce a degradation in the network 
connectivity expressed by the adjacency matrix. 
The degraded adjacency matrix will show a new 
graph diameter   ∗ associated to a higher con-
nectivity order. The Degraded Connectivity Or-
der (DCO) is obviously higher than the NCO.  
There are then many possible degraded connec-
tivity levels, depending on the size and com-
plexity of the network. Determining the complete 
set of all DCO is carried on using the above it-
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erative matrices product procedure, based on 
equations (1) and (2), after switching off all pos-
sible edges and nodes one by one. One can, then, 
construct the graph of all possible connectivity 
states (nominal and degraded) and the corre-
sponding transitions between each couple of 
states. We get then the spectra of the network 
operational states. This spectral graph of the op-
erational states characterises the network. The 
spectra are not algebraic but topological ones.  
The Topological Connectivity Spectral Analysis 
(TCSA) allows us to construct a dynamic model 
describing the operational life of a network. It 
allows us to: 
• setup a conventional threshold at a given deg-

radation state and declare that the network is 
unavailable at a DCO higher or equal to the 
threshold value, i.e. beyond this degraded 
graph diameter, 

• once after, the critical and the non-critical 
transitions are identified (all transitions result-
ing in a DCO higher than the threshold are 
critical),  

• given the well-established association be-
tween all failure modes and transitions (criti-
cal or not), one can determine the probability 
of the network to be unavailable according to 
the conventional threshold.  

Thanks to the TCSA, the problem is transformed 
to a classical multi-state system modelling and 
can be treated using the system reliability theory 
(SRT), (Natvig, 2011; Lisnianski et al., 2010). 
As required by the SRT, some of the degraded 
states are acceptable while others are not. The 
network service supply rupture will be declared 
if the network connectivity state at time t belongs 
to one of the states that are considered as unac-
ceptable / rupture.  
The acceptable connectivity states include the 
nominal connectivity state and all other non-
critical degraded states. The conventional thresh-
old fixes the connectivity order above which the 
service supply rupture is declared. Different 
thresholds may even be defined to signal the pas-
sage of the network from one awareness level to 
another during the evolution of a given degrada-
tion scenario. The degradation process can also 
be dynamically described.  
The network transitions are governed by a sys-
tem of a first order differential equations describ-
ing the probability of being in each state at 
time t. This system of differential equations can 

be linear or non-linear. The inputs that one needs 
are: the failure and repair rates of each node and 
N-N link, the dependency between failures and 
the initial conditions. Besides, one needs the 
network topological graph.  
Given the availability of the input data, one can 
proceed to the modelling of the dynamic behav-
iour of the network connectivity. Calculations 
can be carried on: analytically or numerically 
(Markov, semi-Markov, Monte-Carlo simula-
tion), dependant on the inputs’ complexity, (Nat-
vig, 2011; Lisnianski et al., 2010).  
 
4. The case study  
 

In Figure 1, one presents a network with 9 nodes 
and 15 edges.  
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Figure 1. Schematic presentation of the studied 
network. 
 
Each of the nodes is directly connected to only 
three others except for the nodes {2,7,9} that are 
directly connected to four others. The adjacency 
matrix is given in Table 1. The adjacency matrix 
describes the 1st order connectivity state of the 
network, i.e., N-N connectivity through only one 
edge. Applying the procedure described in Sec-
tion 3 using (1) and (2), one can follow the pro-
gression of the N-N connectivity at higher orders.  
Table 1 shows the state of the connectivity of the 
1st order. This is the network adjacency matrix   . We may underline that the network connec-
tivity is irregular as some nodes are connected to 
four nodes while some others are connected to 
only three other nodes.  
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Table 1.The adjacency matrix  1 of the studied net-
work (the 1st order connectivity state) 
 

  1 2 3 4 5 6 7 8 9  
1 0 1 0 0 0 1 0 0 1 3 
2 1 0 1 0 1 0 0 0 1 4 
3 0 1 0 1 0 0 1 0 0 3 
4 0 0 1 0 1 0 1 0 0 3 
5 0 1 0 1 0 0 0 1 0 3 
6 1 0 0 0 0 0 1 1 0 3 
7 0 0 1 1 0 1 0 0 1 4 
8 0 0 0 0 1 1 0 0 1 3 
9 1 1 0 0 0 0 1 1 0 4 

 
Table 2 shows the state of the network connec-
tivity of the 2nd order. We notice that the network 
connectivity has improved. For example, the 
node {1} is now connected to four more nodes  
(7 – 3 = 4). The nodes {2,5,6,7,9} have already 
access to the other eight nodes.  
 
Table 2. The 2nd order connectivity state of the net-
work 
 

  1 2 3 4 5 6 7 8 9  
1 0 1 1 0 1 1 1 1 1 7 
2 1 0 1 1 1 1 1 1 1 8 
3 1 1 0 1 1 1 1 0 1 7 
4 0 1 1 0 1 1 1 1 1 7 
5 1 1 1 1 0 1 1 1 1 8 
6 1 1 1 1 1 0 1 1 1 8 
7 1 1 1 1 1 1 0 1 1 8 
8 1 1 0 1 1 1 1 0 1 7 
9 1 1 1 1 1 1 1 1 0 8 

 
Table 3 shows the state of the network connec-
tivity of the 3rd order. At the 3rd order, the net-
work is regular and complete. Each node has 
access to all the others.  
 
Table 3. The 3rd order connectivity state of the net-
work 
 

  1 2 3 4 5 6 7 8 9  
1 0 1 1 1 1 1 1 1 1 8 
2 1 0 1 1 1 1 1 1 1 8 
3 1 1 0 1 1 1 1 1 1 8 
4 1 1 1 0 1 1 1 1 1 8 
5 1 1 1 1 0 1 1 1 1 8 
6 1 1 1 1 1 0 1 1 1 8 
7 1 1 1 1 1 1 0 1 1 8 
8 1 1 1 1 1 1 1 0 1 8 
9 1 1 1 1 1 1 1 1 0 8 

 

Now, it is useless to continue to follow the con-
nectivity progression for orders higher than 
three. All higher order connectivity matrices will 
show the same characteristics: regular and com-
plete. The NCO of this network is then equal to 
three (NCO = 3).  
The minimal order of the regular and complete 
connectivity state is then determined and charac-
terises the network connectivity diameter  
(  = 3). 
The loss of some nodes and edges may or may 
not increase the NCO. If the losses result in a 
transition in the NCO to a higher connectivity 
order, the loss and the corresponding transition 
will be called and signalled “critical” if higher 
than a given threshold. The transition of the net-
work connectivity to a higher connectivity order 
is considered as a functional degradation.  
 
4.1. Losses and connectivity degradation  
 

The loss of one or more of the edges or the nodes 
would increase the graph diameter    and sub-
sequently the network connectivity order will 
become higher than the NCO. This increase cor-
responds to a functional degradation in the net-
work connectivity. The departure from the NCO 
will be used to measure the functional degrada-
tion of a network resulted by the edge and node 
losses. The departure from the NCO will be 
judged acceptable or not in the light of some 
operational and safety requirements. To better 
illustrate that we propose to follow up with the 
systemic degradation of the study case.  
Let   ,  describe the availability of the direct 
link between two nodes ( ,  ). The loss of this 
direct link   ,       can logically be described by the 
following Boolean expression: 
   ,      =   ,      +   ,       +   ,        (3) 
 
where, the set    ,      ,   ,         describes the loss (un-
availability) of the nodes   and   and the set    ,         describes the loss of the edge ( ,  ). The 
operator ‘+’ is the Boolean operator    (in this 
expression and all the following Boolean ones).  
The 1st order possible losses are distinguished in 
link-losses ℒ ( ) and node-losses ℒ ( ), such 
as: 
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ℒ ( ) =     ,     ,   ,     ,   ,     ,   ,     ,   ,     ,   ,     ,   ,     ,   ,     ,   ,     , 
                    ,     ,   ,     ,   ,     ,   ,     ,   ,     ,   ,       (4) 
 ℒ ( ) =    ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      , 
                   ,        (5) 
 
But not all these possible losses given in (4) and 
(5) will result in a departure from the NCO of the 
network. One should then use the iterative matrix 
product procedure described in (1) and (2) to 
determine which of the losses will degrade the 
connectivity of the network.  
The global set ℒ  of 1st order losses is then de-
scribed by: 
 ℒ =  ℒ ( ) + ℒ ( ) (6) 
 
Considering the loss   ,       as described by (3), one 
can reduce expression (6) to:  
 ℒ =  ℒ′ ( ) +    (7) 
 
Where the sets ℒ′ ( ) and    are given in (8) 
and (9) below.  
The possible 1st order global losses may then be 
distinguished in an edge-losses set ℒ  ( ) and an 
independent node-losses set ℒ ( ), such as:  
 ℒ  ( ) =     ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      , 
                     ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,        (8) 
   =    ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,      ,   ,        
 (9) 
 
Still, what is a critical transition? The departure 
from the NCO may be considered as a critical 
transition if it brings the network connectivity to 
an undesired state. However, additional criteria 
may be considered as well, as we will see later. 
The procedure to identify critical losses amongst 
those identified in equations (8) and (9) is: 
1. Identify all possible node-losses and edge-

losses, and all their combinations. 
2. Put i = 0 
3. Consider the loss (i + 1) 
4. Update the network adjacency matrix. 
5. Determine the degraded connectivity order 

DCO, using the iterative procedure described 
by (1) and (2). 

6. Is the degraded network connectivity consid-
ered as critical?  

7. If non, Go-to step #3. 
8. If yes, score the loss (i + 1) as a critical one 

and the correspondent graph diameter    
(i + 1). 

9. Go-to step #3 as many times as the number of 
the identified losses of all orders (in step #1). 

10.STOP. 
 
4.2. Critical transitions 
 

In the present case the critical connectivity state 
is determined according to the following conven-
tional criteria:  
1. “all losses that result in an increase in the 

NCO” (all losses associated with   > 3), or  
2. “all losses of an order equal to or higher than 

three”, whatever is   . 
Applying the 1st criteria and separating the set of 
the node-losses (  ) and the edge-losses (ℰ ) of 
order ( ), one can determine the following: the 
set of 1st order critical edge-losses ℰ  is empty: 
 ℰ =  ∅ (10) 
 
none of the 1st order edge-losses, (8), resulted a 
critical transition.  
While the set of the 1st order critical node-losses    is determined such as: 
   =        +        +        +        +        +         
       +        +        +          (11) 
 
all the 1st order node-losses, (9), result in critical 
transitions. 
The set of 2nd order critical edge-losses is: 
 ℰ =     ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      , 
              ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      , 
              ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      , 
              ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      , 
              ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      , 
              ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,      ,   ,     ,   ,       . 
 (12) 
 
There are only 24 critical second order cut-sets 
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out of the possible 105 cut-sets   152  = 105 .  

Cut sets with orders higher than two, ℒ   , are 
all considered as critical in application of the 2nd 
criteria mention above. They result in network 
fragmentation, i.e., the loss of the connectivity 
completeness in the best case and the isolation of 
all the nodes in the worst case.  
One can then write: 
 ℒ   =  ℒ   ( ) +  ℒ   ( ). 
 
The global Boolean expression of critical losses 
of all orders ℒ is then given by the following 
Boolean expression:  
 ℒ =  + ℰ + ℒ   ( ) + ℒ   ( )  

    =  +  ℰ + ℒ   ( ) . (13) 
 
We underline that the set ℒ contains two inde-
pendent subsets {  } and {ℰ , ℒ   ( )}. The 
first subset contains exclusively node-losses and 
the second contains exclusively edge-losses. Ad-
ditionally, the subsets {ℰ } and {ℒ   ( )} are 
disjoint subsets.  
Once the undesired states are defined and the 
correspondent critical transitions are determined, 
one can proceed to developing the degradation 
dynamic model of the network with respect to 
the defined failure criteria.  
 
4.3. Connectivity time-degradation  
 

Having identified the critical connectivity states 
according to the given criteria, we would like to 
determine the probability to be in any of these 
critical states. In other words, to determine the 
network unavailability.  
Two basic pieces of knowledge are still required: 
the unavailability of each node (u ( )) and of 
each edge (u ( )), as a function of time. Notice 
that a lost component is an unavailable one. We 
consider only the systemic unavailability. That 
excludes man-induced or environment-induced 
component losses.  
The unavailability of any of the components 
(nodes, edges) can be issued from operational 
feedback data, empirical models, or analytical 
models. As we opt for the analytical models, the 
required data are the failure rate and the repair 
rate of the nodes and the edges, see Table 4.  

Table 4. Components failure and repair data  
 

 Failure rate ( ) 
(ℎ  ) Repair rate ( ) 

(ℎ  ) 
Node 10 –3 4∙10 –2 

Edge 2.5∙10 –2 10 –1 

 
The transition rates are supposed constant with 
time and mutually independent. To avoid all nu-
merical useless complexity, we assumed that all 
nodes are identical as well as the edges. 
The probability to be in one of the critical con-
nectivity-states is the probability to be in the set ℒ, (13). An equivalent expression to (13) is: 
 ℒ =    +       ∙  ℰ + ℒ   ( ) ,  (14) 
 
where the operator ‘∙’ is the Boolean ‘AND’. 
expression (14) is easier regarding numerical 
use. The probability  ℒ( ) that the network be in 
a critical state, will then be determined as: 
  ℒ( ) =     ( ) +  1 −    ( )   ℰ ( ) +  ℒ   ( )( )  . (15) 
 
Notice that (15) is a numerical algebraic equation 
not a Boolean expression.  
Where    ( ),  ℰ ( ), and  ℒ   ( )( ) are the 
probabilities to be in the critical sets   , ℰ , and ℒ   ( ), respectively. Given that nodes are 
identical, edges are identical, these probabilities 
are determined by as following: 
    ( ) = 1 − [(1 −   ( ))] , (15) 
  ℰ ( ) = 24 ∙ (  ( )) ∙ (1 −   ( ))      (16) 
 Qℒ   ( )( ), 

 = ∑   15  (  ( )) (1 −   ( ))          , (17) 
 
where   (t) and   ( ) are the unavailability of a 
node and an edge, respectively. 
We can now proceed to the quantification of the 
probability of being in a critical state and the 
partial contribution of node-losses or edge-losses 
into the critical state of the network. 
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4.4. Numerical results and discussion  
 

Accordingly, the unavailability   ( ) of each 
component ‘ ’ will be determined by: 
   ( ) =          1 −   (     )  , (18) 
 
where the suffix   refers to nodes it is   and to 
edges if it is  . 
The time-profiles of the node and the edge una-
vailability are illustrated in Figure 2. 
 

 
 
Figure 2. Components’ unavailability vs time 
(ED: edges, NO: nodes). 
 
The intermediate probabilities    ( ),  ℰ ( ),  ℒ   ( )( ) can then be directly calculated using 
equations (15)–(17). 
Finally, one can determine the probability  ℒ( ), 
(14), that the network is in a critical state and the 
contribution of the node-losses and edge-losses 
into  ℒ( ), Figure 3.  
 

 
 
Figure 3. The probabilities  ℒ( ),    ( ), and   ℰ ( ) +  ℒ   ( )( )  vs time  
(NW: network, ED: edges, NO: nodes). 
 
We may also be interested in determining the 
conditional probability of edge-losses and of 

node-losses, given that the network is in a critical 
state, Figure 4. That presents the relative contri-
bution versus time of each type of losses in the 
overall network critical state. 
 

 
 
Figure 4. The relative contribution of different type 
of losses into the critical state of the network vs time 
(ED: edges, NO: nodes). 
 
5. Conclusion 
 

In this chapter we presented a dynamic probabil-
istic approach to assess the global connectivity of 
networks. 
For this purpose, we used graph diameter    to 
measure the connectivity, as defined by the graph 
theory. However, we propose a new procedure to 
determine graphs diameters   . Still, the formal-
ism of the graph theory is static. 
As some of the node-losses and the edge-losses 
may result in a departure from the nominal graph 
diameter   , they will be identified and tagged. 
The degraded network will have a new diameter   higher then   .  
The couples (losses,  ) will be assessed with 
respect to a criticality threshold established in 
view of some requirements of different origin: 
operational, safety, economic, strategic, etc.  
Subsequently, the couples (loss,  ) that produce 
critical connectivity transitions will be isolated.  
Finally, the probability of these critical transi-
tions can be determined. The partial contribu-
tions of node-losses and of edge-losses can also 
be determined. 
To demonstrate the applicability of the de-
marche, an academic study case is used. The 
sources of numerical complexity are eliminated, 
as we supposed that nodes are identical and edg-
es as well. Besides, the components’ unavailabil-
ity is supposed analytically described.  
Our main objective is to evidence the main char-
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acteristic of the demarche. These characteristics 
are recalled as: topological and dynamic. 
This topological characteristic is directly issued 
from the graph theory. Precisely, the use of the 
graph diameter as the unique measure of the 
graph global connectivity state.  
The dynamic description of the connectivity deg-
radation is achieved through the discrimination 
between the acceptable connectivity degradations 
and the critical ones. The notion of critical states 
and transition is directly issued from the system 
reliability theory.  
The discrimination between critical and non-
critical states is decided upon a threshold deter-
mined by a critical diameter: the maximum ac-
ceptable degraded diameter, amongst others.  
 
Acknowledgment  
 

This work is supported by “Eid Associate Con-
sultants – RiskLyse”. The author thanks his col-
leagues from the European Safety, Reliability & 
Data Association – ESReDA, the National Insti-
tute of Applied Science – INSA (Rouen, France), 
and the Department of Mathematics of Gdynia 
Maritime University (Poland) for their fruitful 
discussion and technical advice.  
 
References  
 

Albert, R. & Barabasi, A.-L. 2002. Statistical 
mechanics of complex networks. Reviews of 
Modern Physics 74, 2002. 

Barabasi, A.-L. & Albert, R. 1999, Emergence of 
scaling in random networks. Science 286,  
509–512. 

Bondy, J.A. & Murty U.S.R. 2008. Graph Theo-
ry. Graduate Texts in Mathematics Series. 
Springer-Verlag, London. 

Cvetković, D.M. 2000. Applications of Graph 
Spectra: an Introduction to the Literature. 

Cvetković, D. & Simić, S.K. 2010. Towards a 
spectral theory of graphs based on the signless 
Laplacian, II. Linear Algebra and its Applica-
tions 432, 2257–2272. 

Cvetković, D.M. & Simić, S.K. 2011. Graph 
spectra in computer science. Linear Algebra 
and its Applications 434, 1545–1562. 

Cvetković, D.M., Doob, M. & Sachs, H. 1979. 
Spectra of Graphs – Theory and Applications. 
VEB Deutscher Verlag der Wissenschaften, 
Berlin, Academic Press, New York. 

Eid, M. 2017. Network’s connectivity dynamic 
modelling using a topological binary model: 
critical transitions concept. Proceedings of the 
52nd ESReDA Seminar on Critical Infrastruc-
tures: Enhancing Preparedness and Resilience 
for the Security of Citizens and Services Supply 
Continuity, Lithuanian Energy Institute and 
Vytautas Magnus University, Kaunas. 

Eid, M., Souza de Cursi, E. & El Hami, A. 2012. 
Towards the development of a topological 
model to assess networks performance: connec-
tivity, robustness and reliability. Journal of 
Polish Safety and Reliability Association, 
Summer Safety and Reliability Seminars 3(1), 
23–37. 

Ellens, W., Spieksmaa, F.M., Van Mieghemc, P., 
Jamakovic, A. & Kooij, R.E. 2011. Effective 
graph resistance. Linear Algebra and its Appli-
cations 435, 2491–2506. 

Fiedler, M. 1973. Algebraic connectivity of 
graphs. Czechoslovak Mathematical Journal 
23(2), 298–305. 
http://dml.cz/bitstream/handle/10338.dmlcz/10
1168/CzechMathJ_23-1973-2_11.pdf, 
http://elib.mi.sanu.ac.rs/files/journals/zr/21/n02
1p007.pdf (accessed 13 May 2021). 

Huang, P., Shiu, W.C. & Sun P.K. 2016. Maxim-
izing the spectral radius of k-connected graphs 
with given diameter. Linear Algebra Applica-
tion 488, 350–362. 

Hückel, E. 1931. Quantentheoretische Beitr¨age 
zum Benzolproblem. Zeitschrift für Physik 70, 
204–286. 

Klein, D.J. & Randic, M. 1993. Resistance dis-
tance. Journal of Mathematical Chemistry 12, 
81–95. 

König, D. 1936. Theorie der Endlichen und Un-
endlichen Graphen. Akademische Ver-
lagsgesellschaft M.R.H., Leipzig. 

Li, D., Wang, G. & Meng, J. 2017. Some results 
on the distance and distance signless Laplacian 
spectral radius of graphs and digraphs. Applied 
Mathematics and Computation 293, 218–225. 

Lin, H., Hong, Y., Wang, J. & Shu J. 2013. On 
the distance spectrum of graphs. Linear Alge-
bra and its Applications 439, 1662–1669 

Lisnianski, A., Frenkel, I. & Ding, Y. 2010. Mul-
ti-state System Reliability Analysis and Optimi-
zation for Engineers and Industrial Managers. 
Springer.  



  
Network connectivity dynamic modelling 

 
127 

 

Modarres, M., Kaminskiy, M. & Krivtsov, V. 
2009. Reliability Engineering and Risk Analy-
sis: a Practical Guide. CRC Press, Boca Raton. 

Mohar, B. 1991. The Laplacian spectrum of 
graphs. Journal of Graph Theory, Combinator-
ics, and Applications 2, 871–898.  

Natvig, B. 2011. Multistate Systems Reliability 
Theory with Applications. John Wiley & Sons, 
Ltd. Book Series: Wiley Series in Probability 
and Statistics. 

Rose, K. Eldridge, S. & Chapin, L. 2015. The 
Internet of Things: an Overview Understanding 
the Issues and Challenges of a More Connect-
ed World. The Internet Society (ISOC). 

Van Mieghem, P. 2011. Graph Spectra for Com-
plex Networks. Cambridge University Press, 
Cambridge. 

Wang Y., Chakrabarti, D., Wang C. & Faloutsos, 
C. 2003. Epidemic spreading in real networks: 
an eigenvalue viewpoint. 22nd Symposium on 
Reliable Distributed Computing, Florence, 6–8. 

Wate Mizuno, M. 2011. The Works of KŐNIG 
Dénes (1884-1944) in the Domain of Mathe-
matical Recreations and his Treatment of Rec-
reational Problems in his Works of Graph 
Theory. Thesis submitted on 9 May 2011, HAL 
Id: tel-00591307.  

Wilson, J.R. 1998. Introduction to Graph Theo-
ry. Longman Group Ltd, 4th edition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Eid Mohamed 

128 
 

 
 


