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Abstract  
 

The air pollution assessment based on concentration’s changes of sulphur dioxide, carbon monoxide, 
nitrogen dioxide, ozone, benzene, and particulate matter is discussed in the chapter. The semi-Markov 
model of the environmental pollution process is introduced and its characteristics are determined. Next 
the proposed model is practically applied to examine and characterized air pollution in Gdańsk (Poland) 
as the exemplary industrial agglomeration. The main parameters and characteristics of the air pollution 
process are determined, such as concentration states of particular kinds of air pollutants, the limit values 
of transient probabilities and the mean total sojourn times staying at the air pollutants’ concentration 
states, for the fixed time interval. 
 
1. Introduction  
 

The phenomenon defined as a presence of harm-
ful, toxic substances or their mixtures in the air at 
the concentration level exceed a certain one caus-
ing detrimental changes to the quality of life and 
possessing a health risk is called the air pollution. 
Commonly the air pollution is evaluated based on 
either one kind of pollutant concentration in air 
such as: sulphur dioxide – SO2, carbon monoxide 
– CO, nitrogen dioxide – NO2, ozone – O3, ben-
zene – C6H6, and particulate matter with a diame-
ter less than 2.5 µm or between 2.5 and 10 µm – 
PM2.5 and PM10 respectively or all together. 
There are some methods of air quality assessment 
and forecast. These approaches are usually based 
on the historical statistical data as the background 
of the future pollutant concentration prediction. 
Generally, the statistical forecasting methods, re-
cently reviewed in (Bai et al., 2018), include lin-
ear or nonlinear regression (Dalal, 2015; Hueb-
nerova & Michalek, 2014; (Kaboodvandpour et 
al., 2015; Shafabakhsh et al., 2018), dispersion 
(PriyaDarshini et al., 2016; Shadab et al., 2019; 
Sivacoumar et al., 2001), neural network (Bai et 
al., 2016; Feng et al., 2015; Fu et al., 2015; Park 

et al., 2020; Rahman et al., 2015; Sarwat & El-
Shanshoury, 2018; Wongsathan & Seedadan, 
2016; Yan et al., 2018), fuzzy logic (Bouharati et 
al., 2014; Dunea et al., 2011; Olvera-Garcia et al., 
2016; Xu & Xu, 2018; Yadav et al., 2015; Yang 
et al., 2020) or hybrid systems (Chen et al., 2015; 
Qin et al., 2014; Wang et al., 2015; Wu & Lin, 
2019; Yang et al., 2017; Zhou et al., 2014; Zhu et 
al., 2018).  
In this chapter, the approach based on the semi-
Markov process for the environmental pollution 
assessment is proposed. The semi-Markov pro-
cess theory was developed by Lévy (Lévy, 1954) 
and Smith (Smith, 1955). The semi-Markov pro-
cess is a stochastic one evolves its states over time 
and provides modelling real systems, commonly 
applied in the safety and reliability fields (Bogal-
ecka, 2020; Grabski, 2015; Iosifescu, 1980; 
Kołowrocki, 2004, 2014; Kołowrocki & So-
szyńska-Budny, 2011; Korolyuk & Turbin, 1976; 
Limnios & Oprisan, 2001). The semi-markovian 
approach has never used before to model the air 
pollution. The model will be further applied to op-
timization that allows the mitigation of the air pol-
lution and motivate to using this class of model. 
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The chapter is organized into 5 parts, this Intro-
duction as Section 1, Sections 2–4 and Conclusion 
as Section 5. Section 2 is devoted to air pollution 
problems and methods of air quality assessment 
based on the pollutants’ concentration. In Section 
3, the semi-Markov model of air pollution process 
is introduced and presented. In Section 4, the pro-
posed air pollution model is applied to the exem-
plary industrial agglomeration. The model is ex-
amined and its parameters and characteristics are 
determined such as concentration states of partic-
ular kinds of air pollutants, the limit values of 
transient probabilities and mean total sojourn 
times staying at the air pollutants’ concentration 
states, for the fixed time interval. Finally, the eval-
uation of results is discussed. The possibility of 
the presented model’s wider applications in the 
field considered in this chapter is suggested in 
Conclusion. 
 
2. Pollutants in air quality assessment 
 

The adverse impacts of air pollutants on biosphere 
and human and animal health as well have been 
carried out for years. The quality of air is based on 
the concentration in air some representative pol-
lutants such as: SO2, CO, NO2, O3, C6H6, PM2.5 
and PM10. 
SO2 is a colourless and non-inflammable gas with 
the specific pungent odour. SO2 combines with 
water vapour in the atmosphere to produce acid 
rain. Its wet and dry deposition has a negative im-
pact on the ecosystems’ condition and causes de-
struction (corrosion) of materials. SO2 can affect 
human health, particularly in those suffering from 
asthma and chronic lung diseases. 
CO is a colourless, odourless and toxic gas that is 
emitted into the atmosphere mainly as a result of 
combustion processes of coal, fuels and other or-
ganic compounds when there is not enough oxy-
gen to produce carbon dioxide – CO2. CO com-
bines with haemoglobin and block carries oxygen, 
leaving it ineffective for delivering oxygen to 
bodily tissues. 
NO2 is a reddish brown gas, toxic by inhalation 
and skin absorption. NO2, similarly as SO2, com-
bines with water vapour in the atmosphere to pro-
duce acid rain. NO2 is a product of nitric oxide – 
NO and oxygen (from air) synthesis. NO is 
formed during high temperature combustion pro-
cesses when nitrogen and oxygen present in the 
atmosphere combines each other. Therefore the 

road traffic is recognized as a principal source of 
nitrogen oxides: NO and NO2, collectively known 
as NOx which concentrations are greatest in urban 
areas where traffic is heaviest. 
O3 is a colourless or bluish gas with a characteris-
tic odour. Ground-level ozone is formed primarily 
from photochemical reactions between two other 
pollutants: NOx and volatile organic compounds – 
VOC (e.g. benzene described below) and also 
sunlight. Because of sunlight provides the energy 
to initiate ozone formation, the highest O3 concen-
tration is observed during hot, sunny, summertime 
weather. O3 is a highly reactive oxidiser hazard-
ous to health and also destroys materials. O3 when 
inhaled causes an inflammatory response to the 
eyes, the respiratory tract and decreasing lung ca-
pacity. In the environment O3 contributes to 
“smog”. 
C6H6 is a colourless liquid with a gasoline-like 
odour. It belongs to the group of VOC that are re-
leased in vehicle exhaust gases. C6H6 causes 
chronic health effects include cancer, liver and 
kidney damage, central nervous system disorders, 
reproductive disorders, and birth defects. 
PM can be made up of hundreds of different 
chemicals and contains microscopic solids or liq-
uid droplets that are so small that they can be in-
haled and cause serious health problems. The im-
pact of PM depends on its size (small – PM10 and 
very small – PM2.5) and the number of particles 
retained in various areas in the respiratory system. 
PM2.5 is more likely to travel and to penetrate into 
the deepest sections of the lungs, where they are 
accumulated or dissolved in biological liquids, 
causing aggravation of asthma, acute respiratory 
responses and impairment of the lung activity. On 
the other hand PM10 is more likely to deposit on 
the surfaces of the larger airways of the upper re-
gion of the lung. The road traffic emissions, espe-
cially from diesel vehicles is the principal source 
of airborne PM2.5 and PM10 in cities. 
Because of the harmful properties of above men-
tioned pollutants, their limit values for the ambi-
ent concentration correspond to different levels of 
health concern are distinguished and given in Ta-
ble 1. These values are also used as components 
of the air quality indicators. The pollution levels 
presented in Table 1 correspond to Polish ones 
published by the Main Inspectorate for Environ-
mental Protection. 
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Table 1. Air quality according to pollutants’ concentration 
 
(Pollution level) 

Air quality 
Pollutant’s concentration [µg/dm3] 

SO2 CO NO2 O3 C6H6 PM2.5 PM10 
(1) very good 0-50 0-2∙103 0-40 0-70 0-5 0-12 0-20 

(2) good 50.1-100 2.1∙103-6∙103 40.1-100 70.1-120 5.1-10 12.1-36 20.1-60 
(3) moderate 100.1-200 6.1∙103-1∙104 100.1-150 120.1-150 10.1-15 36.1-60 60.1-100 
(4) sufficient 200.1-350 1.1∙104-1.4∙104 150.1-200 150.1-180 15.1-20 60.1-84 100.1-140 

(5) bad 350.1-500 1.41∙104-2∙104 200.1-400 180.1-240 20.1-50 84.1-120 140.1-200 
(6) very bad >500 >2∙104 >400 >240 >50 >120 >200 

Based on Main Inspectorate for Environmental Protection (http://powietrze.gios.gov.pl/pjp/current?lang=en) 
 
3. Modelling air pollution process  
 

The air pollution process  POLL( ),  ∈ ⟨0, +∞) 
with the discrete air pollutant’s concentration 
states from the set {sPOLL , sPOLL , … , sPOLL } is de-
fined, where POLL is the kind of pollutant. It is as-
sumed that the pollutant’s concentration in the air 
takes  ,  ∈   different concentration states sPOLL , sPOLL , … , sPOLL , that have an influence on 
the air pollution. Next, a semi-Markov model of 
the air pollution process  POLL( ),  ∈ ⟨0, +∞) is 
assumed. Its random conditional sojourn time at 
the air pollutant’s concentration state sPOLL  while 
the next transition will be done to the state sPOLL ,  ,  = 1,2, … ,  ,  ≠   is denoted by  POLL  . Thus 
the air pollution process  POLL( ),  ∈ ⟨0, +∞) is 
described by the following parameters that can be 
evaluated by expert or identified statistically using 
the methods (Bogalecka, 2020, 2021; Grabski, 
2015; Iosifescu, 1980; Kołowrocki, 2014; Lim-
nios & Oprisian, 2005; Smith, 1955): 
• the matrix of probabilities   POLL    x  of the air 

pollution process  POLL( ),  ∈ ⟨0, +∞) transi-
tions between the air pollutant’s concentration 
states sPOLL  and sPOLL , 
  POLL  ,  ,  = 1,2, … ,  ,  ≠   (1) 
 
where ∀ = 1,2, … ,  ,  POLL  = 0, 

• the matrix of mean values   POLL    x  of the air 
pollution process  POLL( ),  ∈ ⟨0, +∞) condi-
tional sojourn times  POLL   at the air pollutant’s 
concentration state  POLL  while its next transi-
tion will be done to the state  POLL ,   ,  = 1,2, … ,  ,  ≠  , 
  POLL  =  [ POLL  ] = ∫    POLL  ( )    
 = ∫   ℎ  ( )  ,  ,  = 1,2, … ,  ,  ≠  , (2) 

 

where ∀ = 1,2, … ,  ,  POLL  = 0, and where 
  POLL  ( ) =  ( POLL  <  ),  ∈ ⟨0, +∞), (3) 
 
for  
  ,  = 1,2, … ,  ,  ≠  , 
 
are the conditional distribution functions of the 
air pollution process  POLL( ),  ∈ ⟨0, +∞) 
conditional sojourn times  POLL  ,   ,  = 1,2, … ,  ,  ≠  , at the states corre-
sponding to conditional density functions 
 ℎPOLL  ( ) =   POLL  ( )  ,  ∈ ⟨0, +∞), (4) 
 
for  
  ,  = 1,2, … ,  ,  ≠  , 
 

• the vector of mean values   POLL   x  of the air 
pollution process  POLL( ),  ∈ ⟨0, +∞) uncon-
ditional sojourn times  POLL ,  = 1,2, … ,  , at 
the air pollutant’s concentration states 
  POLL =  [ POLL ] = ∑  POLL   POLL      ,  (5) 
 
for 
  = 1,2, … ,  ,  
 
where  POLL   and  POLL   are defined by (1) and 
(2) respectively, 

• the vector   POLL   x  of limit values of transi-
ent probabilities 
  POLL ( ) =  ( POLL( ) =  POLL ), (6) 
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for  
  ∈ ⟨0, +∞),  = 1,2, … ,  ,  
 
of the air pollution process  POLL( ),   ∈ ⟨0, +∞) at the particular states  POLL ,   = 1,2, … ,  , where 
  POLL = lim →  POLL ( ) =  POLL  POLL ∑  POLL  POLL      (7) 
 
for  
  = 1,2, … ,  ,  
 
where  POLL ,  = 1,2, … ,  , are given by (5), 
and the probabilities  POLL ,  = 1,2, … ,  , sat-
isfy the system of equations (Bogalecka 2021) 
    POLL  =   POLL  [ POLL  ]∑  POLL = 1     (8) 

 
where  
   POLL  = [ POLL , POLL , … , POLL ], 
 
and   POLL    is given by (1), 

• the vector    POLL   x  of the mean values of the 
total sojourn times   POLL ,  = 1,2, … ,  , 
   POLL =     POLL  ≅  POLL  , (9) 
 
at the particular states  POLL ,  = 1,2, … ,   of 
the air pollution process  POLL( ),  ∈ ⟨0, +∞) 
in the fixed time interval 〈0,  〉,  > 0, where  POLL  are given by (7). 

 
4. Application of air pollution process 
 

4.1. Air pollution in Gdańsk agglomeration  
in 2019 – state of art 

 

The experiment is performed in Gdańsk that be-
longs to Tri-City (Gdynia, Sopot and Gdańsk) ag-
glomeration in Poland. This agglomeration is sit-
uated in Pomerania – the north and seaside part of 
Poland and has a population of over 1 million peo-
ple.  
The experiment area is affected by the pollution 
coming from transport as well as industrial sectors 

and domestic sources. The air pollutants’ concen-
tration data come from three monitoring stations 
located in Gdańsk, at a distance of no more than 
10 km from each other (Fig. 1): 
• station S1 measures concentration of SO2, CO, 

NO2, PM10,  
• station S2 measures concentration of O3, PM2.5, 
• station S3 measures concentration of C6H6.  
 

 
 
Figure 1. Location of air pollution monitoring  
stations. 
 
This stations belong to the regional air quality 
monitoring network where concentrations of pol-
lutants are continuous measured (counted every 
hour). The data coming from the monitoring sys-
tem are free accessible through the internet 
(http://powietrze.gios.gov.pl/pjp/archives). 
The variations of pollutants’ concentration in 
2019 recorded at monitoring stations in Gdańsk 
are presented in Figures 2–8 (colours of fields in 
diagrams correspond to colours of fields of the 
pollution levels given in Table 1).  
Based on data coming from the sampling points of 
the above mentioned monitoring station in 
Gdańsk, only CO and NO2 concentrations are 
classified as very good or good (less than 
100 µg/dm3 for CO and less than 6∙103 µg/dm3 for 
NO2) in 2019.  
The recorded concentrations of SO2, O3, C6H6, 
PM2.5 are usually classified as very good or good 
(less than 100 µg/dm3, 120 µg/dm3, 10 µg/dm3 
and 36 µg/dm3 for particular pollutants respec-
tively), but there are some records for these pollu-
tants classified as moderate or sufficient in 2019. 
Namely, the moderate pollution level has been 
maintained for no more than 44 hours per year 
2019 for SO2, and 22 hours per year 2019 for O3 
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and moderate or sufficient pollution level only for 
no more than 3 hours per year 2019 for C6H6 
whereas moderate pollution level – 16.7 days per 
the second half of year 2019 and sufficient pollu-
tion level – 31 hours per the second half of year 

2019 for PM2.5.  
Only the PM10 concentration exceeded the bad 
pollution level: 21 hours per year 2019, and the 
very bad pollution level: 1 hour per year 2019. 

 

 
 
Figure 2. Variations of SO2 concentration in 2019 
recorded at S1 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
 

 
 
Figure 3. Variations of CO concentration in 2019 
recorded at S1 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
 

 
 
Figure 4. Variations of NO2 concentration in 2019 
recorded at S1 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 

 
 
Figure 5. Variations of O3 concentration in 2019  
recorded at S2 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
 

 
 
Figure 6. Variations of C6H6 concentration in 2019 
recorded at S3 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
 

 
 
Figure 7. Variations of PM2.5 concentration in 2019 
recorded at S2 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
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Figure 8. Variations of PM10 concentration in 2019 
recorded at S1 monitoring station in Gdańsk (own 
work based on data of Main Inspectorate for Environ-
mental Protection). 
 

4.2. Modelling air pollution process for 
Gdańsk agglomeration 

 

Under the assumption that the air pollutant’s con-
centration changing in time and taking into ac-
count data from Table 1, the following  = 9 par-
ticular air pollutants’ concentration states  POLL ,   = 1,2, … ,9 of the air pollution process  POLL( ),   ∈ ⟨0, +∞) are distinguished and presented in 
Table 2 (to get more palpable tangible data, the 
level 1 from Table 1 is divided into four additional 
sublevels expressed with state  POLL ,  POLL ,  POLL  and  POLL  respectively). 
 
 

Table 2. Air quality according to pollutants’ concentration 
 

Pollutant’s 
concentration 

state 

Pollutant’s concentration [µg/dm3] 

SO2 CO NO2 O3 C6H6 PM2.5 PM10  POLL  0-3.5 0-1.4∙102 0-2.8 0-4.9 0-0.35 0-0.84 0-1.4  POLL  3.6-17.5 1.41∙102-7∙102 2.9-14 5.0-24.5 0.36-1.75 0.85-4.2 1.5-7  POLL  17.6-35 7.1∙102-1.4∙103 14.1-28 24.6-49 1.76-3.5 4.3-8.4 7.1-14  POLL  35.1-50 1.4∙103-2∙103 28.1-40 49.1-70 3.6-5 8.5-12 14.1-20  POLL  50.1-100 2.1∙103-6∙103 40.1-100 70.1-120 5.1-10 12.1-36 20.1-60  POLL  100.1-200 6.1∙103-1∙104 100.1-150 120.1-150 10.1-15 36.1-60 60.1-100  POLL  200.1-350 1.1∙104-1.4∙104 150.1-200 150.1-180 15.1-20 60.1-84 100.1-140  POLL  350.1-500 1.41∙104-2∙104 200.1-400 180.1-240 20.1-50 84.1-120 140.1-200  POLL  >500 >2∙104 >400 >240 >50 >120 >200 
 
Next, on the basis of statistical data coming from 
the mentioned above monitoring stations and col-
lected in 2019, the probabilities  POLL  ,   ,  = 1,2, … ,9,  ≠  , of the air pollution process 
transitions between the air pollutant’s concentra-
tion states  POLL  and  POLL ,  ,  = 1,2, … ,9,  ≠  , 
are evaluated according to the formula  
  POLL  =  POLL   POLL  (10) 
 
for  
  ,  = 1,2, … ,9,  ≠  , 
 
where and  POLL  ,  ,  = 1,2, … ,9,  ≠  , is the re-
alization of the air pollution process transitions 
between the air pollutant’s concentration states  POLL  and  POLL , and  POLL ,  = 1,2, … ,9, is the re-
alization of the total number of the air pollution 

process departures from the air pollutant’s con-
centration state  POLL  during the experimental 
time.  
The matrices of probabilities of the air pollution 
process transitions between the air pollutant’s 
concentration states  POLL  and  POLL ,   ,  = 1,2, … ,9,  ≠  , for particular kinds of pol-
lutants take the following forms: 
• for SO2 

   SO2    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0.95 0.04 0 0.01 0 0 0 00.76 0 0.15 0.03 0.05 0.01 0 0 00.03 0.64 0 0.15 0.14 0.04 0 0 00 0.31 0.47 0 0.18 0.04 0 0 00 0.26 0.28 0.25 0 0.21 0 0 00 0 0.08 0.04 0.88 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
  

  
 (11) 
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• for CO 
   CO    x = 

 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 1 0 0 0 0 0 0 00.02 0 0.96 0.02 0 0 0 0 00 0.96 0 0.04 0 0 0 0 00 0.33 0.67 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (12) 

 
• for NO2 

   NO2    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0.99 0.01 0 0 0 0 0 00.23 0 0.71 0.05 0.01 0 0 0 00 0.33 0 0.61 0.06 0 0 0 00 0.08 0.65 0 0.27 0 0 0 00 0.01 0.21 0.78 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (13) 

 
• for O3 

   O3    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0.95 0.04 0.01 0 0 0 0 00.28 0 0.68 0.04 0 0 0 0 00.02 0.40 0 0.56 0.02 0 0 0 00 0.03 0.56 0 0.41 0 0 0 00 0 0.04 0.92 0 0.04 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (14) 

 
• for C6H6 

   C6H6    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0.98 0.01 0 0 0.01 0 0 00.84 0 0.15 0.01 0 0 0 0 00 0.94 0 0.06 0 0 0 0 00 0.13 0.74 0 0.13 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 0.50 0 0.50 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

 
 (15) 

• for PM2.5 
   PM2.5    x = 

 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 1 0 0 0 0 0 0 00.02 0 0.95 0.02 0.01 0 0 0 00 0.34 0 0.57 0.04 0.05 0 0 00 0.01 0.49 0 0.50 0 0 0 00 0.01 0.06 0.67 0 0.26 0 0 00 0 0 0.02 0.79 0 0.19 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

 
 (16) 
 
• for PM10 

   PM10    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0.67 0.19 0.08 0.06 0 0 0 00.06 0 0.62 0.16 0.14 0.02 0 0 00.02 0.44 0 0.30 0.22 0.02 0 0 00.01 0.15 0.42 0 0.39 0.02 0.01 0 00.01 0.14 0.26 0.32 0 0.24 0.03 0 00 0.03 0.07 0.06 0.72 0 0.10 0.02 00 0.07 0.06 0.03 0.26 0.49 0 0.08 0.010 0 0.05 0 0.11 0.42 0.42 0 00 0 0 0 0 1 0 0 0 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤. 

 
 (17) 
 
Further, on the basis of statistical data coming 
from the mentioned above monitoring stations 
and collected in 2019, the matrices of the mean 
values of the air pollution process conditional so-
journ times  POLL  ,  ,  = 1,2, … ,9,  ≠   at the air 
pollutant’s concentration states for particular 
kinds of pollutants take the following forms: 
 
• for SO2 
   SO2    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 25.6 15.5 0 14.5 0 0 0 03.0 0 3.0 2.4 3.5 1.4 0 0 02.7 1.4 0 1.7 1.3 1.0 0 0 00 1.3 1.3 0 1.8 1.0 0 0 00 1.3 1.2 2.1 0 1.8 0 0 00 0 2.0 1.0 1.6 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

 
 (18) 
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• for CO 
   CO    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 6.0 0 0 0 0 0 0 024.0 0 163.9 312.0 0 0 0 0 00 2.7 0 2.5 0 0 0 0 00 1.0 2.0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (19) 

 
• for NO2 

   NO2    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 3.3 1.3 0 0 0 0 0 07.8 0 6.6 3.9 3.0 0 0 0 00 2.7 0 3.2 2.0 0 0 0 00 2.0 2.5 0 1.8 0 0 0 00 1.5 2.3 2.6 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (20) 

 
• for O3 

   O3    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 4.2 2.4 3.0 0 0 0 0 04.5 0 3.5 2.1 0 0 0 0 03.3 4.5 0 4.6 3.0 0 0 0 00 2.9 4.7 0 4.3 0 0 0 00 0 7.9 6.2 0 4.5 0 0 00 0 0 0 2.2 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (21) 

 
• for C6H6 

   C6H6    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 14.3 21.0 0 0 5.0 0 0 08.0 0 14.4 10.5 0 0 0 0 00 3.9 0 11.0 0 0 0 0 00 1.0 2.0 0 1.0 0 0 0 00 0 0 2.0 0 0 0 0 00 0 0 0 1.0 0 1.0 0 00 0 0 0 0 1.0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (22) 

 
 

• for PM2.5 
   PM2.5    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 1.0 0 0 0 0 0 0 03.0 0 3.9 2.0 6.0 0 0 0 00 4.2 0 4.7 3.8 1.0 0 0 00 1.0 2.9 0 3.0 0 0 0 00 5.5 6.1 7.1 0 13.0 0 0 00 0 0 1.0 5.8 0 9.25 0 00 0 0 0 0 2.6 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
  

 
 (23) 
 
• for PM10 

   PM10    x = 
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

0 1.1 1.1 1.0 1.0 0 0 0 02.8 0 2.1 2.1 1.6 1.4 0 0 02.3 1.8 0 1.9 1.6 1.3 0 0 01.3 1.3 1.5 0 1.3 1.3 1.8 0 02.0 2.1 2.3 2.7 0 3.5 2.5 0 00 1.8 1.4 1.3 1.7 0 1.5 1.3 00 1.6 1.3 1.0 1.2 1.3 0 1.2 1.00 0 1.0 0 1.0 1.1 1.1 0 00 0 0 0 0 1.0 0 0 0 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

 
 (24) 
 
This way the air pollution processes for particular 
kinds of pollutant are defined and their main char-
acteristics can be predicted.  
Namely, applying (5) and considering (11) and 
(18) the approximate mean values of uncondi-
tional sojourn times of variables  SO2 ,   = 1,2, … ,9 can be evaluated for SO2 pollutant. 
The values that are not equal to 0 are presented 
only, and they as follows: 
  SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   = 0.95 ∙ 25.6 + 0.04 ∙ 15.5 + 0.01 ∙ 14.5 = 24.32 + 0.62 + 0.15 = 25.09, (25) 
  SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   +  SO2   SO2  +  SO2   SO2   = 0.76 ∙ 3.0 + 0.15 ∙ 3.0 + 0.03 ∙ 2.4 + 0.05 ∙ 3.5 + 0.01 ∙ 1.4 = 2.28 + 0.45 + 0.07 + 0.18 + 0.01 = 2.99, (26) 
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 SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   +  SO2   SO2  +  SO2   SO2   = 0.03 ∙ 2.7 + 0.64 ∙ 1.4 + 0.15 ∙ 1.7 + 0.14 ∙ 1.3 + 0.04 ∙ 1.0 = 0.08 + 0.90 + 0.26 + 0.20 + 0.04 = 1.46, (27) 
  SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   +  SO2   SO2   = 0.31 ∙ 1.3 + 0.47 ∙ 1.3 + 0.18 ∙ 1.8 + 0.04 ∙ 1.0 = 0.40 + 0.61 + 0.32 + 0.04 = 1.37, (28) 
  SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   +  SO2   SO2   = 0.26 ∙ 1.3 + 0.28 ∙ 1.2 + 0.25 ∙ 2.1 + 0.21 ∙ 1.8 = 0.34 + 0.34 + 0.52 + 0.38 = 1.58, (29) 
  SO2 =  SO2   SO2  +  SO2   SO2  +  SO2   SO2   = 0.08 ∙ 2.0 + 0.04 ∙ 1.0 + 0.88 ∙ 1.6 = 0.16 + 0.04 + 1.41 = 1.61. (30) 
 
The results (25)–(30) can be presented as the vec-
tor   SO2   x  of mean values of the air pollution 
process unconditional sojourn times  SO2 ,   = 1,2, … ,9, at the particular SO2 concentration 
states 
   SO2   x = [25.09, 2.99, 1.46, 1.37, 1.58, 
                      1.61, 0, 0, 0]. (31) 
 
In the similarly way, applying (5) and considering 
(12)–(17) and (19)–(24) the vectors of mean val-
ues of the air pollution process unconditional so-
journ times  POLL ,  = 1,2, … ,9, at the air pollu-
tant’s concentration states for other kinds of pol-
lutants are obtained and take the following forms: 
• for CO 
   CO   x = [6.00, 164.06, 2.69, 1.67, 0,  

                     0, 0, 0, 0], (32) 
 
• for NO2 
   NO2   x = [3.28, 6.71, 2.96, 2.27, 2.53,   

                       0, 0, 0, 0], (33) 
 

• for O3 
   O3   x = [4.12, 3.72, 4.50, 4.48, 6.20,  
                     2.20, 0, 0, 0], (34) 
 

• for C6H6 
   C6H6   x = [14.27, 8.99, 4.33, 1.74, 2.00,  
                        1.00, 1.00, 0, 0], (35) 
 

• for PM2.5 
   PM2.5   x = [1.00, 3.88, 4.31, 2.93, 8.56,  

                         6.36, 2.60, 0, 0], (36) 
 
• for PM10 
   PM10   x = [1.09, 2.06, 1.79, 1.39, 2.69,  

                        1.45, 1.28, 1.08, 1.00]. (37) 
 
To find the limit values of the transient probabili-
ties  POLL ,  = 1,2, … ,9 at particular states of the 
process  POLL( ),  ∈ ⟨0, +∞) the system of equa-
tions (8) has to be solved that for particular pollu-
tants, considering (11)–(17) it takes the following 
forms: 
• for SO2 

 

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ SO2 = 0.76 SO2 + 0.03 SO2  SO2 = 0.95 SO2 + 0.64 SO2 + 0.31 SO2           + 0.26 SO2  SO2 = 0.04 SO2 + 0.15 SO2 + 0.47 SO2           + 0.28 SO2 +  0.08 SO2  SO2 = 0.03 SO2 + 0.15 SO2 + 0.25 SO2           + 0.04 SO2  SO2 = 0.01 SO2 + 0.05 SO2 + 0.14 SO2           + 0.18 SO2 +  0.88 SO2  SO2 = 0.01 SO2 + 0.04 SO2 + 0.04 SO2           + 0.21 SO2  SO2 +  SO2 + ⋯+  SO2 = 1

 

 
whereas its solution is 
  SO2 = 0.3177,  SO2 = 0.4132,   SO2 = 0.1205,  SO2 = 0.0497,  
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 SO2 = 0.0727,  SO2 = 0.0262, (38) 
 

• for CO 
 

⎩⎪⎨
⎪⎧ CO = 0.02 CO  CO =  CO + 0.96 CO + 0.33 CO  CO = 0.96 CO + 0.67 CO  CO = 0.02 CO + 0.04 CO  CO +  CO +  CO +  CO = 1

 

 
whereas its solution is 
  CO = 0.0096,  CO = 0.4807,   CO = 0.4808,  CO = 0.0289, (39) 
 

• for NO2 
 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ NO2 = 0.23 NO2  NO2 = 0.99 NO2 + 0.33 NO2 + 0.08 NO2           + 0.01 NO2  NO2 = 0.01 NO2 + 0.71 NO2 + 0.65 NO2           + 0.21 NO2  NO2 = 0.05 NO2 + 0.61 NO2 + 0.78 NO2  NO2 = 0.01 NO2 + 0.06 NO2 + 0.27 NO2  NO2 +  NO2 + ⋯+  NO2 = 1

 

 
whereas its solution is 
  NO2 = 0.0426,  NO2 = 0.1854,   NO2 = 0.3557,  NO2 = 0.3095,   NO2 = 0.1068, (40) 
 

• for O3 
 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ O3 = 0.28 O3 + 0.02 O3  O3 = 0.95 O3 + 0.40 O3 + 0.03 O3  O3 = 0.04 O3 + 0.68 O3 + 0.56 O3         + 0.04 O3  O3 = 0.01 O3 + 0.04 O3 + 0.56 O3         + 0.92 O3  O3 = 0.02 O3 + 0.41 O3 +  O3  O3 = 0.04 O3  O3 +  O3 + ⋯+  O3 = 1

 

 

whereas its solution is 
  O3 = 0.0586,  O3 = 0.1873,   O3 = 0.3063,  O3 = 0.3055,   O3 = 0.1368,  O3 = 0.0055, (41) 
 

• for C6H6 
 

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧ C6H6 = 0.84 C6H6  C6H6 = 0.98 C6H6 + 0.94 C6H6            + 0.13 C6H6  C6H6 = 0.01 C6H6 + 0.15 C6H6            + 0.74 C6H6  C6H6 = 0.01 C6H6 + 0.06 C6H6 +  C6H6  C6H6 = 0.13 C6H6 + 0.50 C6H6  C6H6 = 0.01 C6H6 +  C6H6  C6H6 = 0.50 C6H6  C6H6 +  C6H6 + ⋯+  C6H6 = 1

 

 
whereas its solution is 
  C6H6 = 0.4009,  C6H6 = 0.4773,   C6H6 = 0.0876,  C6H6 = 0.0161,   C6H6 = 0.0061,  C6H6 = 0.0080,   C6H6 = 0.0040, (42) 

 
• for PM2.5 

 

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ PM2.5 = 0.02 PM2.5  PM2.5 =  PM2.5 + 0.34 PM2.5 + 0.01 PM2.5             + 0.01 PM2.5  PM2.5 = 0.95 PM2.5 + 0.49 PM2.5             + 0.06 PM2.5  PM2.5 = 0.02 PM2.5 + 0.57 PM2.5             + 0.67 PM2.5 +  0.02 PM2.5  PM2.5 = 0.01 PM2.5 + 0.04 PM2.5             + 0.50 PM2.5 +  0.79 PM2.5  PM2.5 = 0.05 PM2.5 + 0.26 PM2.5 +  PM2.5  PM2.5 = 0.19 PM2.5  PM2.5 +  PM2.5 + ⋯+  PM2.5 = 1

 

 
whereas its solution is 
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 PM2.5 = 0.0019,  PM2.5 = 0.0933,   PM2.5 = 0.2529,  PM2.5 = 0.3064,   PM2.5 = 0.2366,  PM2.5 = 0.0915,   PM2.5 = 0.0174, (43) 
 
• for PM10 

 

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎧ PM10

 = 0.06 PM10
 + 0.02 PM10

             + 0.01 PM10
 + 0.01 PM10

  PM10
 = 0.67 PM10

 + 0.44 PM10
             + 0.15 PM10

 + 0.14 PM10
             + 0.03 PM10

 + 0.07 PM10
  PM10

 = 0.19 PM10
 + 0.62 PM10

             + 0.42 PM10
 +  0.26 PM10

             + 0.07 PM10
 + 0.06 PM10

             + 0.05 PM10
  PM10

 = 0.08 PM10
 + 0.16 PM10

             + 0.30 PM10
 + 0.32 PM10

             + 0.06 PM10
 + 0.03 PM10

  PM10
 = 0.06 PM10

 + 0.14 PM10
             + 0.22 PM10

 +  0.39 PM10
             + 0.72 PM10

 + 0.26 PM10
             + 0.11 PM10

  PM10
 = 0.02 PM10

 + 0.02 PM10
             + 0.02 PM10

 + 0.24 PM10
             + 0.49 PM10

 + 0.42 PM10
 +  PM10

  PM10
 = 0.01 PM10

 + 0.03 PM10
             + 0.10 PM10

 + 0.42 PM10
  PM10

 = 0.02 PM10
 + 0.08 PM10

  PM10
 = 0.01 PM10

  PM10
 +  PM10

 + ⋯+  PM10
 = 1

 

 
whereas its solution is 
  PM10 = 0.0214,  PM10 = 0.1968,   PM10 = 0.2708,  PM10 = 0.1909,   PM10 = 0.2229,  PM10 = 0.0766,   PM10 = 0.0175,  PM10 = 0.0029,   PM10 = 0.0002. (44) 
 

Next, according to (7) and considering (31)–(37) 
and (38)–(44) respectively, the vectors   POLL   x  

of approximate limit values of the transient prob-
abilities  POLL ,  = 1,2, … ,9 at the particular 
states  POLL  of the process  POLL( ),  ∈ ⟨0, +∞) 
for particular pollutants are as follows: 
• for SO2   SO2   x = [0.8297, 0.1286, 0.0183, 0.0071, 

                     0.0119, 0.0044, 0, 0, 0], (45) 
 

• for CO  
   CO   x = [0.0007,0.9826, 0.0161, 0.0006, 
                    0, 0, 0, 0], (46) 
 

• for NO2 
   NO2   x = [0.0410, 0.3649, 0.3088, 0.2061, 
                      0.0792, 0, 0, 0, 0], (47) 
 

• for O3 
   O3   x = [0.0531, 0.1533, 0.3032, 0.3011, 
                    0.1866, 0.0027,0, 0, 0], (48) 
 

• for C6H6 
   C6H6   x = [0.5478, 0.4109, 0.0363,    
                       0.0027, 0.0012, 0.0007, 
                       0.0004, 0, 0], (49) 
 

• for PM2.5 
   PM2.5   x = [0.0004, 0.0723, 0.2178,  
                        0.1794, 0.4047, 0.1163, 
                        0.0091, 0, 0], (50) 
 

• for PM10 
   PM10   x = [0.0122, 0.2117, 0.2531,  
                       0.1385, 0.3131, 0.0580,   
                       0.0117, 0.0016, 0.0001]. (51) 
 

Finally, by (9) and considering (45)–(51) respec-
tively, the vectors    POLL   x  of approximate 
mean values of the sojourn total time   POLL  of the 
process  ( ) in the fixed time interval  = 1 year  
(365 days) at the particular states  POLL ,   = 1,2, … ,9 for particular pollutants, expressed 
in days, are as follows (Fig. 9): 
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• for SO2 
    SO2   x = [302.84, 46.94, 6.68, 2.59, 4.34, 
                      1.61, … ,0] (52) 

• for CO  
    CO   x = [0.25, 358.65, 5.88, 0.22, … ,0] 
 (53) 
 

• for NO2 
    NO2   x = [14.96, 133.19, 112.71, 75.23, 
                       28.91, … ,0] (54) 
 

• for O3 
    O3   x = [19.38, 55.95, 110.67, 109.90,  
                     68.11, 0.99, … ,0] (55) 
 

• for C6H6 
    C6H6   x = [199.95, 149.98, 13.25, 0.98,  
                        0.44, 0.25, 0.15, 0, 0] (56) 
 

• for PM2.5 
    PM2.5   x = [0.15, 26.39, 79.50, 65.48,  
                         147.71, 42.45, 3.32, 0, 0] (57) 
 

• for PM10 
    PM10   x = [4.45, 77.27, 92.38, 50.55,  
                        114.28, 21.17, 4.27, 0.59,   
                        0.04]. (58) 

 

 
 
Figure 9. Approximate mean values of the sojourn 
total time of air environmental process at particular 
states for particular pollutants in 1 year interval. 

The air pollution of Gdańsk agglomeration, based 
on the above obtained results, can be generally 
classified as very good and good as the highest ap-
proximate mean values of the sojourn total time of 
air environmental process at the particular states 
for particular pollutants concern the states of 
lower pollutants’ concentration (Fig. 9).  
Despite this it is suggested not to use only one 
kind of pollutant to assess the air quality as is the 
case in some countries or cities. It is very possible 
that the concentration of one pollutant is low 
whereas the concentration of another one is high 
in the same time (as an example of this, compare 
Figures 3–4 with Figure 8). 
Moreover, the results (45)–(51) can play a funda-
mental and practically important role in the mini-
mization of air pollution and its consequences 
mitigation through looking corresponding optimal 
values of limit transient probabilities  POLL ,   = 1,2, … ,9 at the particular states    of the pro-
cess  POLL( ) for particular pollutants to minimize 
the mean values of the sojourn total time at these 
states.  
 
5. Conclusion  
 

The semi-Markov model of the environmental 
pollution process as a novel approach to assess the 
air quality is presented in the chapter. The pro-
posed methods provides to obtain the limit values 
of transient probabilities as well as the approxi-
mate mean values of the sojourn total times stay-
ing at the established pollutant’s concentration 
states. These variables predicted using the semi-
Markov model are different than those ones di-
rectly estimated from real data. This fact justifies 
sensibility of considering the semi-markovian ap-
proach to modelling air pollution, especially when 
distributions of the air pollution conditional so-
journ times are different than exponential. Thanks 
to this the prediction of the air pollution process’ 
characteristics is more precise. These results can 
be also applied to the air pollution and its conse-
quences optimization based on the linear pro-
gramming. 
The obtained results can be essential for some au-
thorities responsible for carrying out the air qual-
ity assessment and environment protection. More-
over, the proposed model of the environmental 
pollution process is a universal tool that can be 
used to assess the quality of other ecosystems 
threatened by pollutants.  
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