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Abstract 
 

A crucial role in construction of the models related to accidents on the Baltic Sea water and ports play 

nonhomogeneous Poisson and nonhomogeneous compound Poisson process. The model of consequences  

and connected to it model of accidents number on sea and seaports are here presented. Moreover some 

procedures of the models parameters identification are presented in the chapter. Estimation of model  

some parameters was made based on data from reports of HELCOM and Interreg project Baltic LINes. 

 
1. Introduction 
 

In the paper [7] the models of accidents number  

in the sea and seaports are presented. A crucial role 

in construction of the models plays a Poisson process 

and its extensions especially a nonhomogeneous 

Poisson process. Moreover some procedures of the 

model parameters identification are presented in  

the paper. Estimation of models parameters was 

made based on available data coming from reports of 

HELCOM (2014) and Interreg project Baltic LINes 

(2016–2019). The models allow us to anticipate 

number of accidents on Baltic Sea water and ports in 

future. In this chapter a nonhomogeneous compound 

Poisson process as a model of the accidents 

consequences is also presented. 

 

2. Statistical analysis 
 

Annual report on shipping accidents in the Baltic Sea 

coming from report we can estimate some 

parameters in our models. The Table 1 and Figure 1 

show a total number of ships crossing in the Baltic 

Sea during 2006–2013. The minimum number of 

ships crossing amounted 376671 in 2006 and 

maximum was 430064 in 2008. From 2009 to 2013 

the number of ships crossing was in interval 342754 

– 391699. Based on the data coming from [10] we 

have drawn up Figure 2 that shows a total number of 

shipping accidents in the Baltic Sea during 2006–

2013. According to the reports 149 ship accidents 

occurred in the Baltic Sea area in 2013, which is the 

highest recorded number in the last ten years. The 

number of accidents in the Baltic Sea has shown a 

slight increase in the last three years. Compared to 

2010 the total number of accidents increased by 17% 

in 2013 (Figures 3–4). Over recent years the number 

of maritime transport accidents increased, most of 

cargo ships, followed by passenger ships and tankers 

[9]–[11]. Human error is a major cause of accidents 

and is primarily related to unintentional action. 

However, 17% of the accidents occurred after 

intentional decisions against common rules and plans 

[9]. The number of collisions with other vessels and 

contacts to fixed or floating objects has south-

western Baltic Sea is the main hotspot for these  

types of accidents. In the future, the offshore wind 

power sector will have high spatial requirements, 

especially when all safety distances are assigned  

to all components additional space is when ample 

safety distances are assigned to all components  

and additional space is reserved for the related 

service traffic. The expected increase in free traffic 

will also require more space, which should allow  

for a greater safety distance to maintain the 

commercial viability of increasing the safety distance 

to maintain commercial traffic [9]. 

Using date form Table 1 and Figure 2 we can 

compute the indicators of shipping accidents 

intensity in relation to the ships crossing number 

 

   α = 
𝑁𝑆𝐶

𝑁𝐴𝐶
, 𝛽 =

𝑁𝐴𝐶

𝑁𝑆𝐶
,  

 

where NSC is a number of ship crossing and NAC  

is a number of accidents. 
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Table 1. The total number of ships crossing in the 

Baltic Sea during 2006–2013 
 

Year Passeger Cargo Tanker Other No info Total 

2006 42721 226865 67458 39627 0 376671 

2007 43998 237740 69281 53225 8204 412448 

2008 43060 206755 60746 104814 14689 430064 

2009 37994 198427 68008 61014 9234 374677 

2010 30471 181932 59409 46950 23028 342754 

2011 35398 207273 64957 60123 23948 391699 

2012 33193 207056 66524 54627 22948 384359 

2013 31329 182770 61193 57959 17141 350392 

 

 

 
 

Figure 1. Number of accidents in the Baltic Sea 

during 2006–2013 [10] 

 

 

 
 

Figure 2. Different types of cruises in ships crossing 

in the Baltic Sea during 2006–2013 

 

 

Table 2. Indicators of shipping accidents intensity  

in the Baltic Sea during 2006–2013 
 

Year α β 

2006 3275.40 0.000305 

2007 3495.32 0.000286 

2008 3130.84 0.000320 

2009 3258.06 0.000306 

2010 2698.85 0.000370 

2011 2739.15 0.000365 

2012 2596.97 0.000385 

2013 2351.62 0.000425 

 

 
 

Figure 3. Types of accidents in the 2012 [10] 

 

 

 
 
 

Figure 4. Location of accidents in the Baltic Sea in 

the Baltic Sea during 2004–2013 [11] 
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3. Nonhomogeneous Poisson process 
 

We will begin with a reminder of the concept  

of nonhomogeneous Poisson's process.  

We suppose  

 

   𝜏0 = 𝜗0 = 0,  𝜏𝑛 = ∑ 𝜗i
𝑛
𝑖=0                                   (1)  

 

where 𝜗1, 𝜗2, … , 𝜗𝑛 are positive independent and 

idendical distributed random variables. Let 

 

   𝜏∞ = lim
𝑛→∞

𝜏𝑛 = sup{𝜏𝑛:  𝑛 ∈ ℕ0}.                       (2) 

 

A stochastic process {𝑁(𝑡): 𝑡 ≥ 0} defined by the 

formula  

 

   𝑁(𝑡) = sup{𝑛 ∈ ℕ0: 𝜏𝑛 ≤ 𝑡} (3) 

 

is called a counting process corresponding to a 

random sequence {𝜏𝑛 : ∈ ℕ0}. 

Let  {𝑁(𝑡): 𝑡 ≥ 0} be a stochastic process taking 

values on 𝑆 = {0,1,2, … }, value of which represents 

the number of events in a time interval [0, 𝑡].  
A counting process  {𝑁(𝑡): 𝑡 ≥ 0} is said to be 

nonhomogeneous Poisson process (NPP) with  

an intensity function 𝜆( 𝑡) ≥ 0, 𝑡 ≥ 0, if 
 

1)    𝑃(𝑁(0) = 0) = 1;  (4) 

 

2) the process  {𝑁(𝑡): 𝑡 ≥ 0} is the stochastic 

process with independent increments, the right 

continuous and piecewise constant trajectories; 

 

3)    𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =   

   = 
  (∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ

𝑡
)

𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ

𝑡 .  (5) 

 

From this definition it follows that the one 

dimensional distribution of NPP is given by the rule 

   𝑃(𝑁(𝑡) = 𝑘) =  
(∫ 𝜆(𝑥)𝑑𝑥

𝑡

0
)

𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡

0 ,             (6) 

 

where 𝑘 = 0,1,2, … . 

The expectation and variance of NPP are the 

functions 

 

   𝛬(𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
, 𝑡 ≥ 0,     (7) 

 

   𝑉(t) = 𝑉[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
, 𝑡 ≥ 0.     (8) 

 

The corresponding standard deviation is 

 

   𝐷(t) = √𝑉[𝑁(𝑡)] = √∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
, 𝑡 ≥ 0.           (9) 

 

The expected value of the increment 
𝑁(𝑡 + ℎ) − 𝑁(𝑡) is 

 

   Δ(𝑡; ℎ) = 𝐸(𝑁(𝑡 + ℎ) − 𝑁(𝑡)) 

 

   = ∫ 𝜆(𝑥)𝑑𝑥,
𝑡+ℎ

𝑡
 𝑡, ℎ ≥ 0.                                   (10) 

 

The corresponding standard deviation is 

 

   σ(𝑡; ℎ) = √∫ 𝜆(𝑥)𝑑𝑥,
𝑡+ℎ

𝑡
 𝑡, ℎ ≥ 0.  (11) 

 

An nonhomogeneous Poisson process with  

𝜆( 𝑡) = 𝜆, 𝑡 ≥ 0 for each t ≥ 0, is a regular Poisson 

process. The increments of an nonhomogeneous 

Poisson process are independent, but not necessarily 

stationary. A nonhomogeneous Poisson process  

is a Markov process.  

 

4. Compound Poisson process 
 

Let {𝑁(𝑡): 𝑡 ≥ 0} be a Poisson proces with intensity 

𝜆 > 0 and 𝑋1, 𝑋2, … be sequence of independent  

and identically distributed (i.i.d.) random variables 

independent of {𝑁(𝑡): 𝑡 ≥ 0}. A stochastic process 

 

   𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡), 𝑡 ≥ 0, (12) 

 

is called a compound Poisson process (CPP).  

The probability discrete distribution function of 
{𝑁(𝑡): 𝑡 ≥ 0} at k is 

 

   𝑝(𝑘; 𝑡) = 𝑃(𝑁(𝑡) = 𝑘) =  
(𝜆 𝑡)𝑘

𝑘 !
𝑒−𝜆 𝑡, 𝑘 = 0,1,2, … . 

 

We quote a well-known result. 

 

If 𝐸(𝑋1
2) < ∞, then 

 

1)    𝐸[𝑋(𝑡)] = 𝜆 𝑡 𝐸(𝑋1), 𝑡 ≥ 0,           (13) 

 

2)    𝑉[𝑋(𝑡)] =  𝜆 𝑡 𝐸(𝑋1
2), 𝑡 ≥ 0.          (14) 

 

The concepts and facts can be generalized. We 

assume now that {𝑁(𝑡): 𝑡 ≥ 0} is a nonhomogeneous 

Poisson process (NPP) with an intensity function 

𝜆( 𝑡), 𝑡 ≥ 0, such that 𝜆( 𝑡) ≥ 0, for  𝑡 ≥ 0, and 

𝑋1, 𝑋2, …,  is a sequence of the independent  

and identically distributed (i.i.d.) random variables 

independent of {𝑁(𝑡): 𝑡 ≥ 0}. A stochastic process 
{𝑋(𝑡): 𝑡 ≥ 0} determines by the formula 

 

   𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡), 𝑡 ≥ 0,                 (15) 

 

is said to be a nonhomogeneous compound Poisson 

process (NCPP). 
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Proposition 1 

If {𝑁(𝑡): 𝑡 ≥ 0} is a nonhomogeneous Poisson 

process (NPP) with an intensity function 

𝜆( 𝑡), 𝑡 ≥ 0, such that 𝜆( 𝑡) ≥ 0 for 𝑡 ≥ 0 , then 

cumulative distribution function (CDF) of the 

nonhomogeneous compound Poisson process is 

given by the rule: 
 

   𝐺(𝑥, 𝑡) = 𝐼[0,∞)(𝑥)𝑒−Λ( 𝑡) + ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=1 ,   (16) 

 

where 𝐹𝑋
(𝑘)

(𝑥) denotes the k–fold convolution  

of CDF of the random variables 𝑋𝑖, i = 1,2,…, and 

 

   𝑝(𝑘; 𝑡) =
(Λ( 𝑡))𝑘

𝑘 !
𝑒−Λ( 𝑡), 𝑡 ≥ 0, 𝑘 = 0,1,…,     (17) 

 

where  

 

   Λ( 𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
.  (18) 

 

Proof: Using total probability low, we 

obtain cumulative distribution function (CDF) of 

NCPP. 

 

   𝐺(𝑥, 𝑡) = 𝑃(𝑋(𝑡) ≤ 𝑥) 

   =𝑃(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡) ≤ 𝑥) 

   = ∑ 𝑃(𝑋1 + ⋯ + 𝑋𝑁(𝑡) ≤ 𝑥|𝑁(𝑡) =  𝑘)∞
𝑘=0   

   ∙ 𝑃(𝑁(𝑡) = 𝑘) = ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=0  

   = 𝐼[0,∞)(𝑥)𝑒−𝛬( 𝑡) + ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=1 ,  

 

where 𝐹𝑋
(𝑘)

(𝑥) denotes the k–fold convolution  

of CDF of the random variables 𝑋𝑖, i = 1,2,…, and 

 

   𝑝(𝑘; 𝑡) =
(Λ( 𝑡))𝑘

𝑘 !
𝑒−Λ( 𝑡), 𝑡 ≥ 0, 𝑘 = 0,1,…, 

 

where  

 

   Λ( 𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
. 

 

Conclusion 1 

If the random variables 𝑋𝑖, i =1,2,…, are absolutely 

continuous with density function 𝑓𝑋(∙), then the 

density of NCPP is given by the rule 

 

   𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑓𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑥 ≠ 0, 𝑡 > 0,  (19) 

 

where 𝑓𝑋
(𝑘)

(𝑥) denotes k–fold convolution of the 

density function 𝑓𝑋(𝑥).  
 

Conclusion 2 

If the random variables 𝑋𝑖, i = 1,2,…, are discrete 

distributed with density function 

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑆, then the density of NCPP 

is given by the rule: 

 

   𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑝𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑥 ≠ 0, 𝑡 > 0,   (20) 

 

where 𝑝𝑋
(𝑘)

(𝑥) denotes k–fold convolution of the 

discrete density function 𝑝𝑋(𝑥).   

 

Proposition 2 

Let {𝑋(𝑡): 𝑡 ≥ 0} be a compound nonhomogeneous 

Poisson process (NCPP). 

If 𝐸(𝑋1
2) < ∞, then  

 

1)    𝐸[𝑋(𝑡)] = 𝛬( 𝑡) 𝐸(𝑋1), 𝑡 ≥ 0,   (21) 

 

2)    𝑉[𝑋(𝑡)] =  Λ( 𝑡)𝐸(𝑋1
2), 𝑡 ≥ 0.  (22) 

 

Proof: Applying the property of conditional 

expectation  

 

   𝐸[𝑋(𝑡)] = 𝐸[𝐸(𝑋(𝑡)|𝑁(𝑡))] 
 

we have 

 

   𝐸[𝐸(𝑋(𝑡)|𝑁(𝑡))] 

   = 𝐸 (𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡))|𝑁(𝑡)) 

   = ∑  𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡)|𝑁(𝑡) = 𝑛)∞
𝑛=0  

   ⋅ 𝑃(𝑁(𝑡) = 𝑛) 

   = ∑  𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) 𝑃(𝑁(𝑡) = 𝑛)∞
𝑛=0  

   = ∑  𝐸(𝑋1) 𝑛 𝑃(𝑁(𝑡) = 𝑛) = 𝐸(𝑋1)𝐸(𝑁(𝑡))∞
𝑛=0  

   = Λ( 𝑡) 𝐸(𝑋1). 

 

Using a formula 

 

   𝑉[𝑋(𝑡)] = 𝐸[𝑉(𝑋(𝑡)|𝑁(𝑡))] + 𝑉[𝐸(𝑋(𝑡)|𝑁(𝑡))] 
 

we get 

 

   𝐸[𝑉(𝑋(𝑡)|𝑁(𝑡))] 

   = 𝐸 (𝑉(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡))|𝑁(𝑡)) 

   = ∑  𝑉(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡)|𝑁(𝑡) = 𝑛)∞
𝑛=0  

   ⋅ 𝑃(𝑁(𝑡) = 𝑛) 

   = ∑  𝑉(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) 𝑃(𝑁(𝑡) = 𝑛)∞
𝑛=0  

   = ∑  𝑉(𝑋1) 𝑛 𝑃(𝑁(𝑡) = 𝑛)∞
𝑛=0 = 

   𝑉(𝑋1)𝐸(𝑁(𝑡)) = 𝑉(𝑋1)Λ( 𝑡), 

 

and 

 

   𝑉[𝐸(𝑋(𝑡)|𝑁(𝑡))] 

   = 𝑉 (𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡))|𝑁(𝑡)) 

   = 𝑉(𝐸(𝑋1)𝑁(𝑡)) = (𝐸(𝑋1))2𝑉(𝑁(𝑡)) 

   = (𝐸(𝑋1))2𝛬(𝑡). 
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Therefore 

 

   𝑉[𝑋(𝑡)]  = 𝑉(𝑋1)[Λ( 𝑡) + (𝐸(𝑋1))2] 
   =  𝛬(𝑡)[𝐸(𝑋1

2) − (𝐸(𝑋1))2 + (𝐸(𝑋1))2] 
   = 𝛬( 𝑡) 𝐸(𝑋1

2). 

 

Proposition 2 

Let {𝑋(𝑡 + ℎ) − 𝑋(𝑡): 𝑡 ≥ 0} be an increament  

of compound nonhomogeneous Poisson process sit 

(CNPP). 

If 𝐸(𝑋1
2) < ∞, then  

 

   𝐸[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] = Δ(𝑡; ℎ) 𝐸(𝑋1),              (23) 

 

   𝑉[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] =  Δ(𝑡; ℎ) 𝐸(𝑋1
2),   (24) 

 

   Δ(𝑡; ℎ) = ∫ 𝜆(𝑥)𝑑𝑥
𝑡+ℎ

𝑡
.            (25) 

 

5. Models of accidents number in the Baltic  

Sea and seaports  
 

We will quote information from the paper [7], which 

is necessary for further consideration. 
From statistical anlysis in chapter 2 it follows that  

a stochastic process {𝑁(𝑡);  𝑡 ≥ 0} representing  

the number of accidents in the Baltic Sea in a time 

interval [0, 𝑡] of this process is given by (4)–(6) 

while its one dimensional distribution is determined 

by (6). We can use practically these rules if will 

know the intensity function 𝜆(𝑡) > 0. To define this 

function, we utilize information presented above in 

statistical analysis. 

Dividing the number of accidents in each year, that 

are shown in Figure 1, by 365 or 366 we get the 

intensity in units of [1 / day ]. The results are shown 

in Table 3. Figure 7 shows the empirical intensity of 

accidents in the Baltic Sea and seaports. 

As a parameters of the models we will approximate 

the empirical intensity by a linear regression function 

𝑦 = 𝑎𝑥 + 𝑏 that satisfied condition 

 

   𝑆(𝑎, 𝑏) =  ∑  [𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)]2𝑛
𝑖=1  → min. 

 

Recall that parameters 𝑎 and 𝑏 are given by the rules 

 

   𝑎 =
𝜇11

𝜇20
 ,   𝑏 = 𝑚01 − 𝑎𝑚10     (26) 

 

or 

 

   𝑎 = 𝑟
𝑠𝑌

𝑠𝑋
,   𝑏 = �̅� −𝑎�̅�,    (27) 

 

where  

   �̅� = 𝑚10 =
1

𝑛
 ∑ 𝑥𝑖,𝑛

𝑖=1  

 

   �̅� = 𝑚01 =
1

𝑛
 ∑ 𝑦𝑖 ,𝑛

𝑖=1  

 

   𝑚11 =
1

𝑛
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 , 

 

   𝜇11 = 𝑚11 − 𝑚10 𝑚01 , 

 

   𝑟 =
𝜇11

√𝜇20 𝜇02

 . 

 

Table 3. The empirical intensity of accidents in the 

Baltic Sea and seaports 
 

Year Interval 
Center 

of interval 

Number 

of 

accidents 

Intensity 

[1/day] 

2004 [0, 366) 183 133 0.36338 

2005 [366,731) 731.5 146 0.40000 

2006 [731, 1096) 913.5 115 0.31506 

2007 [1096, 1461) 1278.5 118 0.32328 

2008 [1461, 1827) 1644 138 0.37704 

2009 [1827, 2192) 2009.5 115 0.31506 

2010 [2192, 2557) 2374.5 127 0.34794 

2011 [2557, 2922) 2374.5 143 0.39178 

2012 [2922, 3288) 3105 148 0.40437 

2013 [3288, 3653) 3470.5 149 0.40821 

 

Applaying the rules (26)–(27) for the data from 

Table 3 and using Excel we obtain the linear 

intensity of accidents 

 

   𝜆(𝑥) = 0.0000147564 𝑥 + 0.3379257233,    (28) 

   𝑥 ≥ 0. 
 

From (7), we have 

 

  Λ(𝑡) = ∫ (0.0000147564 𝑥
𝑡

0
+ 0.3379257233)𝑑𝑥. 

 

Hence we obtain 

 

  Λ(𝑡) = 0.0000073782𝑡2 +  0.3379257233𝑡, (29) 

   𝑡 ≥ 0. 
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From (6) and (7) we obtain one dimensional 

distribution of NPP  

 

   𝑃(𝑁(𝑡) = 𝑘) =   
(𝛬(𝑡))

𝑘

𝑘 !
𝑒−𝛬(𝑡), 𝑘 = 0,1,2, … ,  (30) 

 

where Λ(𝑡) is given by (29). 

Finnally we can say that the model of the accident 

number in the Baltic Sea and seaport is the 

nonhomogeneous Poisson process with the parameter 

Λ(𝑡),   𝑡 ≥ 0 determines by (29). 

 

Example 1 [6] 

The predicted number of injured person and ships in 

accidents in the Baltic Sea and ports from June 1, 

2017 to August 31, 2017 we will get in a similar 

way. (Tables 4–5, Figures 5–7) In this case 

 

    = 0.224. 

 

The expected value and standard deviation of injured 

people number at considered period are 

 

   𝐸𝑁𝐼 =  34.45 ⋅  0.224 = 7.7168, 

   𝐷𝑁𝐼 = √34.45 ⋅ (0.224 + 0.2242) =  3.0733. 
 

Table 4. Distribution of injured person number 
 

x g(x) 

0 0.00099 

1 0.00613 

2 0.01959 

3 0.04317 

4 0.07358 

5 0.10332 

6 0.12431 

7 0.13164 

8 0.12507 

9 0.1082 

10 0.0862 

11 0.0638 

12 0.04426 

13 0.02891 

14 0.0179 

15 0.01053 

16 0.00592 

17 0.00319 

18 0.0016 

19 0.0008 

 
 

Figure 5. Distribution of injured person number  

in a single accident 

 

 
 

Figure 6. Distribution of injured person number 

 
 

 
 

Figure 7. Distribution of the ships lost number  

in a single accident 
 

Table 5. Distribution of ships lost number 
 

x 0 1 2 3 

g(x) 0.57879 0.31396 0.08766 0.01677 

x 4 5 6 7 

g(x) 0.00247 0.00029 0.00003 0.0000003 

0.1531

0.2794
0.2627

0.1693

0.0841

0.0343

0.0119
0.0037

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7
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6. Random parameter in Poisson model 
 

The expected number of accidents often depends on 

changing randomly external conditions. Thus it can 

be assumed that the parameter 𝜆 is a random 

variable. 

We assume that this random variable has a gamma 

distribution with a density 

 

   𝑓(𝑢) = {
𝛼𝜈

Γ(𝜈)
𝑢𝜈−1𝑒−𝛼 𝜈

0
 for u ≤ 0,   (31) 

 

where 𝛼 > 0, 𝜈 > 1. 

Suppose that a condition distribution of the accidents 

number given 𝜆 has a Poisson distribution 

 

   𝑃(𝑁(𝑡) = 𝑘| 𝜆) =
(𝜆 𝑡)𝑘

𝑘!
𝑒−𝜆 𝑡, 𝑘 = 0,1,2,… .       (32) 

 

From the total probability low we obtain 

unconditional one-dimensional distribution of the 

process 

 

   𝑃(𝑁(𝑡) = 𝑘) = ∫
(𝑢 𝑡)𝑘𝑒−𝑢 𝑡

𝑘!

∞

0
 

𝛼𝜈

Γ(𝜈)
𝑢𝜈−1𝑒−𝛼 𝜈𝑑𝑢. (33) 

 

For k ≥  0 we obtain 

 

   𝑃(𝑁(𝑡) = 0) = 𝑃(𝜗1 > 𝑡) = (
𝛼

𝛼+𝑡
)

 𝜈
. (34) 

 

Finally for 𝑘 = 1,2 , … we have [2] 

 

   𝑃(𝑁(𝑡) = 𝑘) = 
ν(ν+1)…(ν+k−1)

𝑘!
 (

𝛼

𝛼+𝑡
)

 𝑘
(

𝛼

𝛼+𝑡
)

 𝜈
 (35) 

 

where 𝑘 = 1,2 ,…, 𝜈 > 1, 𝜆 > 0. 

The random variable T = 𝜗1 denotes a lifetime of an 

object. The function 

 

   𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 1 −  𝑃(𝑇 ≥ 𝑡) = (
𝛼

𝛼+𝑡
)

 𝜈
  (36) 

 

is called a survival function. 

An expected value of the random variable T is 

 

   𝐸(𝑇) =∫ 𝜈 (
𝛼

𝛼+𝑡
)

 𝜈
𝑑𝑡

∞

0
. (37) 

 

The second moment is 

 

   2 ∫ 𝑡 (
𝛼

𝛼+𝑡
)

 𝜈
𝑑𝑡

∞

0
 =

2𝑎2

(𝜈−1)(𝜈−2)
. (38)  

 

The variance is 

 

   𝑉(𝑇) =
𝛼2𝜈

(ν−1)2(ν−2)
 .  (39) 

It should be mentioned that the variance there exists 

if 𝜈 > 2. The standard deviation is 

 

   𝜎(𝑇) = √𝑉(𝑇). (40) 

 

7. Procedure of parameters identification 
 

Notice that values mentioned in Section 6 depend  

on the two parameters: both 𝛼 and 𝜈. There is natural 

question, how to determine these parameters.  

One method of estimating the unknown parameters  

is the so called the method of moments. In this 

method the unknown parameters are replaced  

by their statistical estimates derived from the results 

of observation. In this case, the expected value  

is replaced by the average of the sample and the 

second moment of the random variable is replaced  

by the second moment of the sample. Solving  

the corresponding system of equations we obtain  

the unknown parameters of the distribution. An 

estimate of the expectation 𝐸(𝑇) is mean: 

 

   �̅� =
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
        (41) 

 

and the estimate of is second moment from the 

sample 

 

   𝑥2̅̅ ̅ = 
1

𝑛
 ∑ 𝑥𝑘

2̅̅ ̅𝑛
𝑘=1 .     (42) 

 

An empirical variance takes the form 

 

   𝒔𝟐 = 𝑥2̅̅ ̅  − (𝑥)̅̅ ̅2.  (43) 

 

A standard deviation is 

 

   𝒔 = √𝑥2̅̅ ̅  − (𝑥)̅̅ ̅2.  (44) 

 

Then, the parameters 𝛼 and 𝜈 can be evaluated by: 
 

   𝛼 =
2(𝑥)̅̅ ̅3

(𝑥)̅̅ ̅2+𝒔𝟐 ,   (45) 

 

   𝜈 =  
2(𝑥)̅̅ ̅2

(𝑥)̅̅ ̅2−𝒔𝟐.  (46) 

 

8. Conclusion 
 

The random processes theory delivers concepts  

and theorems that enable to construct stochastic 

models concerning accidents. The counting processes 

and processes with independent increments are  

the most appropriate for modelling number of the 

accidents number in the Baltic Sea waters and ports  

in specified period of time. A crucial role in the 

models construction plays a nonhomogeneous 
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Poisson process and nonhomogeneous compound 

Poisson process. Based on the nonhomogeneous 

Poisson process the models of accidents number  

in the Baltic Sea Waters and Seaports have been 

constructed. Moreover, some procedures of the 

model parameters identification are presented  

in the paper. Estimation of model parameters was 

made based on data from reports of HELCOM 

(2014) and Interreg project Baltic LINes (2016). 

The nonhomogeneous compound Poisson process  

as a model of the accidents consequences is also 

presented in this paper. Theoretical results are 

applied for anticipation the number of fatalities, 

number injured people and number of lost ships  

in accidents at the Baltic Sea waters and ports in 

specified period of time. The expected number  

of accidents often depends on changing randomly 

external conditions. Thus it can be assumed that  

the parameter 𝜆 is a random variable. In the paper  

is assumed that this random variable has Weibull 

distribution. 
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