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Abstract 
 

The chapter has been intended to provide a comprehensive understanding on one class of reliability models used 

to perform probabilistic risk assessments. This is the class of binary-based conceptual models. This class  

of models allows assessing events occurrence, system states identification, states transitions and corresponding 

relevant probabilistic dynamic quantities. Besides, it allows the binarization of multistate systems so that ever 

bigger systems can be modelled, under conditions. The term “system” is used in its widest sense to include 

physical engineering systems, processes, and any structured set of actions/events. Consequently, the modelling 

capabilities cover sequential events and cycling transitions. The move from “risk management decision-making” 

to “risk-informed decision-making” paradigm has obviously created the right environment to develop  

and implement risk-based decision-making models in a variety of sectors. A brief and short non-exhaustive 

survey is presented identifying sectors using these models to assess risks in support to decision-making.  

 
1. Introduction 
 

Reliability Models (RMs) provide major support  

to decision-making processes in a large variety  

of sectors. They provide decision makers with 

rationales that are traceable, transmissible, and 

formal. They are subject to continual improvement 

and maturation thanks to the cumulated operational 

feedback experiences. The last interesting point  

of RMs and not the least, they can be encoded  

in numerical programs and processed by computers. 

Subsequently, big-data processing, automation, self-

learning, and artificial-intelligence algorithms 

become daily realities in almost all sectors of Man’s 

activities. 

Acknowledging all what mentioned above,  

the major attractiveness of the RMs for decision-

making results from their dynamic-modelling 

capability and subsequently their predictive potential 

[18]–[19], [20], [28], [41].   

This is precisely what a decision-maker is seeking 

for [17], [21], [27], [35]. In this work we focus on 

one set of RMs. Decision making issue is briefly 

treated in Section 2 and Section 3. The specificity  

of decision making in relation with risk management 

is treated in Section 2. While the evolution  

of the paradigms of risk management is treated  

in Section 3. Three paradigms are identified  

in Section 3: deterministic, coupled deterministic-

uncertainty, and the probabilistic ones. The 

probabilistic paradigm used in risk-based decision 

making is exploiting the full predictive  

and dynamic potential of the RMs. 

In this work we focus on one macro-class of RMs, 

the class of logical-numerical models. Within this 

macro-class, we focus on one specific class which  

is the binary-based reliability models.  

Within the frame of the binary-based models,  

Section 4, one starts with a basic elementary binary 

(EB) system which is the simplest conceptual 

functional entity one may conceive (Section 4.1)  

the analysis of the EB system reveals a mathematical 

pattern that governs the system dynamics  

(Section 4.2). This mathematical pattern consists of 

three differential equations describing the time 

behavior of the three quantities characterizing the EB 

system: the probability to be in a given state at time 

‘t’, the probability of sojourning in that state within 

an interval ‘Δ’, and the probability of sojourning out 

of that state within an interval ‘Δ’. Then we use the 

EB system to build up the multistate system  

(Section 5) and so that we may move closer to real 

life engineering systems. Then, we present, briefly, 

two tools to represent the multistate systems: the 

Boolean tool (Section 5.1) and the state graph one  
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(Section 5.2). While the interstate transitions  

and the independency condition are treated  

in Section 5.3. Once after, the multistate system is 

binarized back again (Section 6) to serve in building 

a system of systems, and so on. We demonstrate that 

the multistate system is also characterized by  

the same quantities as the EB system (Section 6.1, 

Section 6.2, Section 6.3). The cycle from an 

elementary binary system, to a multistate one and 

back to a (non-) elementary binary system again is 

governed by the same generic mathematical dynamic 

pattern (Section 6.4). This pattern is described by a 

set of three differential equations describing 

 respectively the three probabilistic quantities that 

fully describe the system dynamic: the probability to 

be in a well-defined state or set of stats of interest, 

the sojourn probability in that state or set of stats, 

and the sojourn probability out of that state or set of 

stats.  

We would like to underline that the term system 

covers all forms of organized (/structured) actions 

(/activities) that are designed to realize a well-

defined objective or set of objectives. 

Besides, the terms ‘state’ and ‘set of states’ can be 

described by Boolean cut-sets (minimal or not) and 

by a graph of states.  

Once the system is defined and the states of interest 

are identified, the transitions between the states will 

be determined. The dynamic aspect of the RMs 

comes from the full description of these transitions 

either through differential equations or integral ones. 

The structurally related subjects, that are widely 

modelled with the binary based RMs, are: the 

transitions cycling and the sequential events. The 

first subject is treated in Section 7 while the later is 

treated in Section 8. Dynamic sequential modelling is 

treated in Section 8.1 and static modelling is treated  

in Section 8.2. The static model is considered  

as a special case of the dynamic on.  

A short survey of the sectorial exploitations of the 

RMs is given is Section 9. The short survey  

is far from being considered as exhaustive. However, 

the author believes is representative enough of the 

sectorial end-users of the RMs. 

To size in which manner these models can support 

decision-making, we should, first, identify the issue 

of “decision-making”. 

 

2. What is the issue in decision making? 
 

What is the real issue in “decision-making”?  

Is it the “decision” by itself or the “subject of the 

decision”? 

Waking up in the morning and thinking of what 

decision(s) to be taken today, one may think  

of thousands of decisions need be taken. But no one 

ever thought of taking a decision such as:  

1. Should I step back to “Yesterday”?, 

2. Should I step forward to “Tomorrow”?, or  

3. Should I stay in “Today”? 

This decision has simply non-sense to be worked out.  

Decision making has a sense when there is more than 

one option. Even with more than one option, 

decision-makers can still make the best decision if 

and only if all the options, the profit function of each 

option and the constraints in each option are well-

determined and static. One will naturally choose the 

most beneficial option or the less harmful one. 

Operational Research and optimization algorithms 

were just other formal approaches to treat that kind 

of decisions.  

Nevertheless, decision-making becomes a real 

concern if: “the options and the corresponding 

conditions are dynamic and, additionally, random”.  

Indeed, this is the case with real life systems and 

processes created by man.  

Facing this issue of decision making, risk assessment 

and decision-making has evolved in three phases 

over almost 2 centuries. Three phases and three risk 

relevant decision-making paradigms. 

 

3. Reliability model and decision making  
 

Three major paradigms have sequentially been 

introduced on the scene of risk assessment and risk-

informed decision making: 

 deterministic,  

 coupled deterministic-uncertainty,  

 probabilistic (objective and subjective). 

These three paradigms have chronologically been 

developed in the order given above. 

 

3.1. Deterministic paradigm  
 

By the 2nd half of the 19th century, the biggest 

technical risky challenges were related to civil  

and mechanical engineering realisation. The success  

or the failure of an engineering object was expressed 

by a trade-off between the resistance of the used 

materials and the strength of the applied loads. We 

may call that the Stress-Resistance (S–R) paradigm. 

Although, the original inspiration of the model is 

from material sciences, it could easily serve in a 

variety of engineering fields as varying as: finances, 

psychology, sociology, ecology, history of 

civilisations, …, etc.  

The S–R paradigm in its simplest formulation:  

“if the stress is higher than the resistance, the system 

fails”.  
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Figure 1. Schematic representation of the S–R risk 

paradigm 

 

One can then identify three operational regimes: 

 if S < R a safe regime, 

 if S = R a critical regime, 

 if S > R a failure regime. 

So, risk manager and engineers had one ultimate 

objective is to maximize (R–S) if R > S or to 

minimize (S–R) if S > R. 

Once that is stated, engineering objects and processes 

were designed so that the operational loads are one 

third of the critical load so that the used materials 

may support the load. The paradigm gave birth to the 

famous “Safety Factor”.  

And the Safety Factor based risk management 

became the mainstream.  

 

3.2. Coupled deterministic uncertainty  
 

While the civil and mechanical realisations continued 

their ever-increasing development, applied statistics 

also continue its progress and tools development.  

The continual increase of successful civil and 

mechanical engineering realizations was naturally 

accompanied with an increasing number of failure 

cases, as well. Despite of the use of the safety factor, 

some realizations failed. Something was still 

uncertain but happening and leading to the collapse 

of some nice and big engineering achievements, 

during the first half of the 20th century.  

In the meantime, applied statistics was expanding its 

assessments in epidemiology, insurance, banking, 

and stock market decision making activities [4], [11], 

[21]. A statistics-based paradigm was developing 

with obvious growing concerns related to risk 

assessment, risk management and risk prediction.  

The specific statistical concept of “uncertainty” 

started invading hard fundamental and engineering 

sciences, especially systems engineering.  

The fully deterministic paradigm was moving to a 

coupled deterministic-uncertainty one. Risk 

assessments continue to be performed based on 

deterministic models. The uncertainties were injected 

into the input data.  

Engineers, designers, and analysts admitted that the 

values of the materials resistance and of the applied 

stresses are mean values and are associated with a 

given distribution that has its own inherent 

dispersion characteristics (variance and other 

different moments). By commodity, in most of the 

engineering applications the used distribution 

function is a Gaussian one, Figure 2. 

The paradigm moved from deterministic (S–R) to a 

deterministic coupled with uncertainty assessment.  

 

 
 

Figure 2. Schematic representation of the coupled 

uncertainties S–R risk paradigm 

 

Practices are moving step by step from risk-

management to risk-management and uncertainty-

informed decision-making. 

 

3.3. Probabilistic paradigm  
 

Starting from the second half of the 20th century. 

Rapid progress in sciences and technology gave birth 

to illimited types of realizations with more complex 

systems, smarter and interactive. Besides, the 

operational feedback from previous engineering 

realizations was also cumulating at high rate 

producing excessively big operational databases. The 

statistical treatment of these data allowed to identify 

patterns and constructing probabilistic models of 

failure modes and initiating events of different kinds.  

In many engineering disciplines, deterministic 

thinking admitted and increasingly integrated 

statistical-probabilistic thinking [2], [24].  

Probabilistic assessments are diffusing almost in all 

daily life activities [17]–[18], [28]. Even in the most 

orthodox deterministic engineering disciplines such 

as structure mechanics and rupture mechanics.   

Risk ideological thinking is now increasing and 

shifting to risk-informed decision-making.  

Probabilistic Risk Assessment (PRA) informs 

decision-maker.  

PRA finds its foundation in the Reliability Theory 

and exploits Reliability Models (RMs). Then, lets 

briefly present a selected choice of some of these 

RMs, exclusively, those that are binary based 
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models. We start first by the most basic elementary 

conceptual model that may ever exist.  

 

4. Elementary binary system 
 

The Elementary Binary (𝐸𝐵) is a conceptual binary 

functional entity, Figure 3.  

 

 
 

Figure 3. A schematic representation of the EBS 

 

The EBS has only two possible and exclusive states. 

The system spends his lifetime in successive 

transitions from one state to the other. The transitions 

from one stat to the other are described by a well-

defined random process, characterized by two 

transition rates (𝜆(𝑡), 𝜇(𝑡)). The transition rates can 

generally be any function of time.  

Let the state of interest be the state (0), one can then 

determine at any instant of time the probability to be 

in state (0), as following:   

“Let 𝑝(𝑡 + Δ𝑡) be the probability to be in state (0)  

at (𝑡 + Δ𝑡). The 𝐸𝐵𝑆 can be in state (0) if and only  

it was already at state (0) at “𝑡” and had not gone 

through any transition out of the state within  

the interval “Δ𝑡”, or it was not in the state (0) at “𝑡” 

and had gone through a transition to the state (0) 

within the interval “Δ𝑡”. That can shortly be 

expressed by the following mathematical expression: 

 

   𝑝(𝑡 + Δ𝑡) 

   = 𝑝(𝑡)(1 − 𝜆(𝑡)Δ𝑡) + (1 − 𝑝(𝑡))𝜇(𝑡)Δ𝑡, (1) 

 

where: 

 𝑝(𝑡)(1 − 𝜆Δ𝑡) is the probability to be at 

state (0) at time “𝑡” and does not go through 

a transition out of the state (0) within the 

interval “Δ𝑡”; 

 (1 − 𝑝(𝑡))𝜇Δ𝑡 is the probability of not being 

at state (0) at time “𝑡” and goes through  

a transition to the state (0) within the interval 

(Δ𝑡); 

 𝑝(𝑡 + Δ𝑡) is the probability to be at state (0) 

at time “𝑡 + Δ𝑡”. 

Having taken the limit (Δ𝑡 → 0), (1) becomes: 

 

   
𝑑

𝑑𝑡
𝑝(𝑡) = −(𝜆(𝑡) + 𝜇(𝑡))𝑝(𝑡) + 𝜇(𝑡). (2) 

 

One can certainly use the same procedure regarding 

the probability 𝑞(𝑡) of “not being in state (0)” at 

time “𝑡”. We recall that both 𝑝(𝑡) and 𝑞(𝑡) are 

expressing two instantaneous qualities, i.e, both are 

determined at instant “𝑡”. Both verify the following 

relation at any instant “𝑡”: 

 

   𝑝(𝑡) + 𝑞(𝑡) = 1,    ∀𝑡 ∈  ℛ+. 

 

The solution of (2) requires an initial condition. 

Analysts used to use the initial condition 𝑞(0) rather 

than 𝑝(0) and assign the letter “𝛾” for this initial 

condition, 𝛾 = 𝑞(0) = 1 − 𝑝(0). In the case  

of mechanical systems reliability, “𝛾” is called 

“failure-to-start” probability. We insist on the fact 

that “𝛾” is a probability while (𝜆(𝑡), 𝜇(𝑡)) are 

transition rates. 

Two other quantities are used to specify the dynamic 

of the systems: the “sojourn probability in state (0)” 

and the “sojourn probability out of state (0)”. Both 

are integral qualities, i.e., are determined over a time-

interval “𝑇; 𝑇 = 𝑡 − 𝑡1” and 𝑡 ≥ 𝑡1.  

Let’s 𝑅(𝑡 + Δ𝑡, 𝑡1) be the sojourn probability  

in state (0) continuously within the period  

(𝑇;  𝑇 = 𝑡 + Δ𝑡 − 𝑡1). As “𝑡1” is a fixed lower limit 

of the period, one can write the sojourn probability as 

𝑅(𝑡 + Δ𝑡), for the sack of simple writings.  

The procedure to determine the sojourn probabilities 

is basically similar to the one described above for the 

instantaneous probability.  

Let “𝑅(𝑡 + Δ𝑡)” be the sojourn probability in state 

(0) continuously over the whole interval (𝑡 + Δ𝑡). 

Then, one can write: 

 

   𝑅(𝑡 + Δ𝑡) =  𝑅(𝑡) ⋅ (1 − 𝜆Δ𝑡), 

 

where 

 𝑅(𝑡) is the probability that the system has 

already sojourned continuously during  

the whole interval “𝑡 − 𝑡1”; 

 (1 − 𝜆Δ𝑡) is the probability to continue for 

an additional infinitesimal period Δ𝑡. 

Having developed the left-hand side of the equation 

and taken the limit Δ𝑡 → 0, one finds that: 

 

   
𝑑

𝑑𝑡
𝑅(𝑡) =  −𝜆𝑅(𝑡). (3) 

 

The same can exactly be done to determine the 

sojourn probability out of state (0), 𝑆(𝑇). That gives: 

 

   
𝑑

𝑑𝑡
𝑆(𝑡) =  −𝜇𝑆(𝑡). (4) 
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It is worth emphasizing on the differences between 

the probabilities of being in/out of a given state 

𝑝(𝑡)/ 𝑞(𝑡) and the probability of sojourning  

in a given state 𝑅(𝑇(𝑡))/𝑆(𝑇(𝑡)). The probabilities 

of being in/out of a given state are instantaneous 

quantities at instant “𝑡”. While, the probabilities of 

sojourning in/out of a given state are integral 

quantities determined over an interval “𝑡”.  

 

4.1. Solution pattern 
 

The general solutions of equations (2) for the 

instantaneous probability 𝑝(𝑡), the sojourn-in 

probability 𝑅(𝑡) and the sojourn-out probability 𝑆(𝑡) 

have respectively the following form: 
 

   𝑝(𝑡) ⋅ 𝑒∫ 𝜎(𝜉)𝑑𝜉
𝑡

0  

   = (∫ 𝜇(𝜉) ⋅ 𝑒∫ 𝜎(𝜂)𝑑𝜂
𝜉

0 𝑑𝜉
𝑡

0
) + 𝑝(0),                      (5) 

 

where 
 

   𝜎(𝑡) =  𝜆(𝑡) + 𝜇(𝑡) 
 

and 
 

   𝑝(0) = 1 − 𝛾. 
 

While the solutions for 𝑅(𝑡) and 𝑆(𝑡) are given by: 
 

   𝑅(𝑡) = 𝑒− ∫ 𝜆(𝜉)𝑑𝜉
𝑡

0 ,  
 

   𝑆(𝑡) = 𝑒− ∫ 𝜇(𝜉)𝑑𝜉
𝑡

0 . 
 

Given that the characteristic parameters are well-

defined, (𝜆(𝑡), 𝜇(𝑡), 𝛾).  

Equations (2) may sometimes have analytical 

solutions. That is driven by the nature of the 

stochastic processes that govern the transitions from 

and to the states of interest. If the transitions are 

governed by a stochastic Poisson process, i.e., the 

transition rates are time-independent, then the 

analytical solutions exist for all the concerned 

quantities: 𝑝(𝑡), 𝑞(𝑡), 𝑅(𝑡) and 𝑆(𝑡). 

 

4.2. Asymptotic behaviour 
 

From equations (2), one can obviously deduce that 

this dynamic predictive model shows an asymptotic 

behavior such as: 
 

   lim
𝑡→∞

𝑝(𝑡) =
𝜇(𝑡 → ∞)

(𝜆(𝑡 → ∞) + 𝜇(𝑡 → ∞))
. 

 

The asymptotic limit of 𝑝(𝑡) exists if and only if one 

of the characteristic parameters (𝜆, 𝜇) is not null. 

 

The same for the sojourn probabilities: 

 
   lim

𝑡→∞
𝑅(𝑡) → 0. 

 

The asymptotic value of lim
𝑡→∞

𝑅(𝑡) vanishes  

if and only if 𝜆(𝑡 → ∞) does not vanish, and 

similarly: 

 
   lim

𝑡→∞
𝑆(𝑡) → 0. 

 
The asymptotic value of lim

𝑡→∞
𝑆(𝑡) vanishes  

if and only if 𝜇(𝑡 → ∞) does not vanish. 

 

4.3. Dynamic and stochastic pattern 
 

Equations (2) describe perfectly the dynamic random 

process governing any elementary binary-based 

system concept. 

Obviously, this conceptual pattern is dynamic, 

predictive, and able to handle random processes.  

The issue now is: can this conceptual model be used 

to construct more elaborated models describing 

systems closer to real-life ones, given that real 

systems are very often multi state ones? 

 

5. Multistate system 
 

To keep in line with the didactic characteristic of the 

paper, lets immediately choose a simple academic 

case to apply on.  

Let 𝑀𝑆 be a simple multistate system that includes 

three independent elementary binary systems (𝐸𝐵𝑆). 

The success of this 𝑀𝑆 requires at least the success 

of 2 out of the three 𝐸𝐵𝑆: 𝑠1, 𝑠2, and 𝑠3. The overall 

system success state 𝑆 can then be determined  

by the following Boolean expression: 

 
   𝑆 = 𝑠1 ⋅ 𝑠2 +  𝑠2 ⋅ 𝑠3 +  𝑠3 ⋅ 𝑠1, (6) 

 
where ‘⋅’ and ‘+’ are the Boolean operators ‘AND’ 

and ‘OR’, respectively. The success is logically 

described in (6) using the minimal cut-sets of 

“success”. 

Besides, this multi-state system can also be 

represented by its corresponding graph of states, as 

well, Figure 4.  

The Boolean representation in (6) and the graphical 

one in Figure 4 are equivalent. 

The success space of 𝑀𝑆 contains 4 states (in green 

background) that verify the success criteria given  

by the Boolean expression in (6). The other 4 states 

(in red background) do not. 
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Figure 4. State graph of a 2/3 multi-state system 

(success = green, non-success = red) 

 

It may be necessary to underline that the equal 

sharing of the states between the success and the 

failure spaces is specific to the 2/3 case. Otherwise, 

the sharing of the states is quite different from one 

multistate system to another. It is obvious that 

functional states sharing is driven by the success  

/ non-success imposed criteria. 

The probability of the success of the 𝑀𝑆 can then be 

determined using the two models, the Boolean, and 

the state-graph one. 

 

5.1. Boolean based model 
 

The Boolean expression of success (6) can be 

rewritten using its exclusive cut-sets rather than the 

minimal cut-sets. As there are three minimal cut-sets 

in (6), then we may expect having 6, (3! = 6), 

alternative but equivalent expressions with exclusive 

cut-sets. One of them looks like the following 

expression: 

 

   𝑆 = 𝑠1 ⋅ 𝑠2 + 𝑠1̅̅ ̅ ⋅ 𝑠2 ⋅ 𝑠3 + 𝑠2̅̅ ̅ ⋅ 𝑠3 ⋅ 𝑠1, (7) 

 

where 𝑠1 describes the success of system 1 and 𝑠1̅̅ ̅ 

describes the non-success (the failure). 

As the expression in (7) contains only exclusive cut-

sets, so the overall success probability is directly  

the sum of the occurrence probabilities of each  

of the exclusive cut-sets. Accordingly, the 

probability of success 𝑃𝑆(𝑡) can immediately  

be determined by:  

 

   𝑃𝑆(𝑡) = 𝑝1(𝑡) ⋅ 𝑝2(𝑡) + 𝑞1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑝3(𝑡) 

                +𝑞2(𝑡) ⋅ 𝑝3(𝑡) ⋅ 𝑝1(𝑡). (8) 

 

While 𝑄𝑆(𝑡) is given by: 

 

   𝑄𝑆(𝑡) = 𝑞1(𝑡) ⋅ 𝑞2(𝑡) + 𝑝1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑞3(𝑡) 

                 +𝑝2(𝑡) ⋅ 𝑞3(𝑡) ⋅ 𝑞1(𝑡), (9) 

where; 

 

   𝑝𝑖(𝑡) + 𝑞𝑖(𝑡) = 1,   𝑖 = 1, 2, 3, 

 

𝑝𝑖(𝑡) is the solution of (2) for each of the  

three independent elementary success, using  

the corresponding parameters (𝜆𝑖(𝑡), 𝜇𝑖(𝑡), 𝛾𝑖) of 

each. 

It may certainly be worth underling that both 

Boolean and state graph models are helpful  

to directly determine the instantaneous dynamic 

quantities like 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡). However, it is not  

as straight forward regarding the determination  

of the integral quantities like 𝑅𝑖(𝑇(𝑡)) and 𝑆𝑖(𝑇(𝑡)). 

We will come to this point later: (11) (12). 

 

5.2. Graph based model 
 

One can also use the state-graph model to determine 

the probability of success as long as all  

the corresponding parameters (𝜆𝑖(𝑡), 𝜇𝑖(𝑡), 𝛾𝑖) are 

known.  

If the corresponding parameters (𝜆𝑖(𝑡), 𝜇𝑖(𝑡), 𝛾𝑖). 

are time-constant, the state-graph will be a Markov  

type graph describing a stochastic Poisson process. If 

the corresponding parameters (𝜆𝑖(𝑡), 𝜇𝑖(𝑡), 𝛾𝑖) are 

slowly varying with time, one can use semi-Markov 

linearization approach [21]–[22].  

Otherwise, one may use Monte Carlo simulation.  

However, the probabilities of success and failure  

are not the only characteristic quantities  

of a multistate system. Analysts can determine many 

other characteristic quantities, such as: the transition 

rates between states or set of states, and the transition 

rates between the success and the failure spaces.  

But before proceeding to the transitions between 

different states, we should briefly cover a subject 

relating the impact of transitions’ independency on 

the transitions.  

 

5.3. Transitions and independency  
 

A founding assumption in this binary-based set  

of models is the “transitions independency”  

or the “independent occurrence” of the transitions.  

Take any two different independent transitions on the 

state graph, characterized by their transition rates 

“𝜏1(𝑡)” and “𝜏2(𝑡)”, respectively. The individual 

probabilities of these transitions within a time-

interval “Δ𝑡” are respectively “𝜏1(t)Δ𝑡” and 

“𝜏2(t)Δ𝑡”. Given that the two transitions are 

independent, then the probability of observing both 

transitions in the same interval of time is simply 
(𝜏1(t)Δ𝑡 ⋅ 𝜏2(t)Δ𝑡). Besides, let “𝛵(t)” be the rate of 

the simultaneous occurrence of both transitions at 

time “𝑡”, then the simultaneous occurrence 
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probability within the time-interval “Δ𝑡” can be 

determined by “𝛵(𝑡)Δ𝑡”, as well. 

One can then lay down the necessary condition: 

 

   𝛵(𝑡)Δ𝑡 =  𝜏1(t)Δ𝑡 ⋅ 𝜏2(t)Δ𝑡 . 
 

Clearing Δ𝑡 off from both sides and taking the limits 

Δ𝑡 → 0: 

 

   𝛵(𝑡) =  lim
Δ𝑡→0

[(𝜏1(t) ⋅ 𝜏2(t))Δ𝑡] . 

 

Having taken the limits, we get the following: 

 

   𝛵(𝑡))
Δ𝑡→0

 →  0. 

 

That simply means that the rate of a simultaneous 

occurrence of independent events is always null.  

The rule is that “independent events can’t  

happen simultaneously”. Simultaneous independent 

transitions are forbidden.  

Only dependent/correlated transitions can happen 

simultaneously.  

This is a characteristic quality in all multistate 

systems built up with independent transitions.  

Once the forbidden transitions notion is established, 

we may proceed to the multistate system 

binarization.  

 

6. Multistate system binarization  
 

One can also determine some other characteristic 

qualities of multistate systems. That requires 

acquiring the notions of “critical transitions”, 

“critical states” and the “multistate system 

binarization”.  

One can see in Figure 4 that the transitions between 

the space of success and the space of failure  

go through some paths. These paths design  

the “critical transitions”. Critical transitions are, then, 

those that result in systematic transitions from one 

space to another. Not all the interstate transitions are 

then critical.  

On the state-graph in Figure 4, one can determine  

12 possible transitions in the success space between 

the states 1, 2, 3 and 4, in both senses. None of them 

is a critical transition. One may notice the same  

for the space of failure.  

However, one can determine only 12 critical 

transitions in both senses between these 6 couples  

of states: (2,5), (2,6), (3,5), (3,7), (4,6) and (4,7). 

Notice that the states (2,3,4) belong to the success 

space while states (5,6,7) belong to the failure space. 

That is why these states and their corresponding 

transitions are critical.  

On Figure 4, One should have a total of 56 potential 

transitions in both senses between all the states:  

   2 · (
8
2

) = 2 · 28 = 56, 

 

then, we still have 20 non-active transitions in both 

senses, (56 − 3 · 12 = 20). 

These transitions are forbidden because of the 

hypotheses of the “independence” between 

transitions laid down above. This is the case, for 

example, of the transitions between the couple of 

states (1,7). 

Once critical transitions are identified in both senses 

between the success and the failure spaces, one may 

envisage the determination of the “equivalent 

transition rates” in both senses between the spaces of 

success and failure.  

The determination of such equivalent transition rates 

for the whole system (Λ(𝑡), 𝛭(𝑡)) is straight forward 

once; the concerned states and their transitions are 

determined.  

Considering the system represented by the state 

graph given in Figure 4, one can determine the 

“equivalent transition rate out of the success space”, 

Λ(𝑡). To proceed towards this target, one need 

determining the probability 𝑃𝑠(𝑡) to be in the success 

state, first. 

The system probability 𝑃𝑠(𝑡) to be in the success 

space at time “𝑡” is determined directly from  

the state graph, such as: 

 

   𝑃𝑠(𝑡)   =  𝑝1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑝3(𝑡)  

               + 𝑞1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑝3(𝑡) 

               + 𝑝1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑝3(𝑡) 

               + 𝑝1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑞3(𝑡). (10) 

 

Notice that (10) which is directly deduced from the 

state graph is equal to (9) deduced directly from the 

logical expression of success, despite the slightly 

different form of each. 

Having determined the 𝑃𝑠(𝑡), we can proceed to the 

determination of the system equivalent parameters 

(Λ(𝑡), 𝛭(𝑡), Γ). 

 

6.1. Equivalent initial condition 
 

Having determined the probability of the system  

to be in the success space, 𝑃𝑠(𝑡), at any instant  

of time “𝑡”, the probability of not to be in the success 

space at time “𝑡 = 0”, 𝑄𝑠(0), can immediately  

be determined from (9) as: 

 

   Γ𝑆 = 𝛾1 ⋅ 𝛾2 + (1 − 𝛾1) ⋅ 𝛾2 ⋅ 𝛾3(𝑡) 

        +(1 − 𝛾2) ⋅ 𝛾3 ⋅ 𝛾1 
 

using (10) will give the same result.  
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6.2. Equivalent transition rates  
 

Once 𝑃𝑠(𝑡) is determined by one way or the other, 

one can proceed to the determination of Λ(𝑡) as 

following. Let Λ(𝑡) be the equivalent transition rate 

of the whole system from the success space to the 

failure one.  

The occurrence probability of the transition within an 

interval “Δ𝑡” is given by (Λ𝑠(𝑡)Δ𝑡 ⋅ 𝑃𝑠(𝑡)), where 

𝑃𝑠(𝑡) is the probability to be in the success space at 

“𝑡”. This transition probability is also equal to the 

sum of all the probabilities describing the critical 

transitions from the success space, such as: 

 

   Λ𝑠(𝑡)Δ𝑡 ⋅ 𝑃𝑠(𝑡) 
   = (𝜆2 + 𝜆3)Δ𝑡 ⋅ 𝑞1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑝3(𝑡) 
   + (𝜆1 + 𝜆3)Δ𝑡 ⋅ 𝑝1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑝3(𝑡)  
   + (𝜆1 + 𝜆2)Δ𝑡 ⋅ 𝑝1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑞3(𝑡). 
 

Clearing “Δ𝑡” from both sides and taking the limits, 

we get: 

 

   Λ𝑠(𝑡) ∙ 𝑃𝑠(𝑡) 
   = (𝜆2 + 𝜆3) ⋅ 𝑞1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑝3(𝑡) 
   + (𝜆1 + 𝜆3) ⋅ 𝑝1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑝3(𝑡) 
   + (𝜆1 + 𝜆2) ⋅ 𝑝1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑞3(𝑡). (11) 

 

Determining the system equivalent transition rate 

back, 𝛭(𝑡), to the success space is straight forward 

as above. It is determined as following:  

 

   𝛭𝑠(𝑡) ∙ 𝑄𝑠(𝑡) 
   = (𝜇2 + 𝜇3) ⋅ 𝑝1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑞3(𝑡) 
   + (𝜇1 + 𝜇3) ⋅ 𝑞1(𝑡) ⋅ 𝑝2(𝑡) ⋅ 𝑞3(𝑡) 
   + (𝜇1 + 𝜇2) ⋅ 𝑞1(𝑡) ⋅ 𝑞2(𝑡) ⋅ 𝑝3(𝑡). (12) 

 

By that stage, the multistate system is fully 

characterized by its parameters (Λ𝑠(𝑡), 𝛭𝑠(𝑡), Γ𝑠) at 

any instant of time. 

 

6.3. Sojourn probabilities 
 

Once the equivalent parameters are determined, one 

can proceed to the determination of the sojourn-in 

and the sojourn-out probabilities (𝑅𝑠(𝑡), 𝑆𝑠(𝑡)), such 

as: 

 

   𝑅𝑠(𝑡) = exp (− ∫ Λ𝑠(𝜉)𝑑𝜉

𝑡

0

) 

 

and 

 

   𝑆𝑠(𝑡) = exp (− ∫ 𝛭𝑠(𝜉)𝑑𝜉

𝑡

0

). 

The determination of the above integrations requires 

very often the use of numerical techniques. However, 

by no means this can be considered as a serious 

issue.  

 

6.4. Inclusion in the pattern  
 

The system equivalent parameters (Λ(𝑡), 𝛭(𝑡), Γ)  

are the characteristic parameters of the whole system. 

Subsequently, they obey to the same pattern given  

in equations (2) such as: 

 

   
𝑑

𝑑𝑡
𝑃𝑠(𝑡) = −(Λ(𝑡) + 𝛭(𝑡))𝑃𝑠(𝑡) + 𝛭(𝑡), (13) 

 

   
𝑑

𝑑𝑡
𝑅𝑠(𝑡) = −Λ(𝑡)𝑅𝑠(𝑡), (14) 

 

   
𝑑

𝑑𝑡
𝑆𝑠(𝑡) = −𝛭(𝑡)𝑆𝑠(𝑡), (15) 

 

given the initial condition “Γ𝑆”. 

Once the multistate system is binarized, it can be 

then handled as if it was an elementary binary system 

and combined with other elementary binary systems 

to build up bigger and bigger systems.  

Caution: The ever building up bigger and bigger 

systems is valid if and only if all the used elementary 

binary systems (basic or not) are independent. 

 

6.5. Asymptotic behaviour  
 

From the pattern given in (13)-(15), one can deduce 

that these systems have an asymptotic behavior when 

“𝑡” is big enough (𝑡 → ∞). At the asymptotic  

the characteristic quantities of the system become  

as such: 

 

   𝑃𝑠(𝑡)]𝑡→∞ =  (
Μ(𝑡)

Μ(𝑡)+Λ(𝑡)
)

𝑡→∞
 (16) 

 

and 

 

   𝑄𝑠(𝑡)]𝑡→∞ =  (
Λ(𝑡)

Μ(𝑡)+Λ(𝑡)
)

𝑡→∞
. (17) 

 

The asymptote of 𝑃𝑠(𝑡) (/𝑄𝑠(𝑡)) exists if and only if, 

at least, one of the asymptotic values of the transition 

rates does not tend to zero.  

While the asymptote values of the sojourn 

probabilities tend to zero: 

 

   𝑅𝑠(𝑡)]𝑡→∞ → 0, 

 

   𝑆𝑠(𝑡)]𝑡→∞ → 0. 

 

If and only if the asymptotic value of the 

corresponding transition rate does not tend to zero.  

By now, we have shown by so far that the multistate 
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system is fully described by its characteristic 

parameters (Λ(𝑡), 𝛭(𝑡), Γ) in the same pattern as the 

elementary binary one with its ones (𝜆(𝑡), 𝜇(𝑡), γ). 

Consequently, we will use now and then the triplet 

(𝜆(𝑡), 𝜇(𝑡), 𝛾) to characterize both the elementary 

binary systems and the multistate ones.  

 

7. Transition cycles 
 

In many sectorial applications, analysts would like to 

analyze and assess the occurrence of some well-

defined transition-cycles within a given interval  

of time.  

A transition cycle is defined as a transition out  

of and then back to a given set of states. Let 𝒮 be  

a set of states of interest (success), fully defined by 

its characteristic transition rates out and in: 𝜆 and  𝜇, 

respectively. Both 𝜆 and  𝜇 are generally function of 

time.  

The probability 𝑃𝑘(𝑡) that the system experiences 𝑘 

transition cycles within the interval [0, 𝑡] is given by 

the following integral equation [14]: 

 

   𝑃𝑘(𝑡) 
 

   = ∫ ∫ [ 𝑃𝑘−1(𝜉)](𝜆𝑑𝜉)𝑒−𝜇(𝜂−𝜉)(𝜇𝑑𝜂)𝑒−𝜆(𝑡−𝜂)

𝑡

𝜂=𝜉

𝑡

𝜉=0

.  

 (18) 

 

If the transition rates 𝜆 and  𝜇 are constant with time, 

(18) analytical solution exist: 
 

   𝑃𝑘(𝑡) =  Ψ𝑘(𝑡)𝑒−𝜆𝑡 −  Φ𝑘(𝑡)𝑒−𝜇𝑡, (19) 

 

where 

 

   Ψ𝑘(𝑡) = (
λμ

𝜎2)
𝑘

[∑ (−1)𝑗 ∙ 𝐶𝑗
𝑘 ∙

(𝜎𝑡)𝑘−𝑗

(𝑘−𝑗)!
𝑘
𝑗=0 ], (20) 

 

   Φ𝑘(𝑡) = (−1)𝑘 ∙ (
λμ

𝜎2)
𝑘

[∑ 𝐵𝑗
𝑘 ∙

(𝜎𝑡)𝑘−𝑗

(𝑘−𝑗)!
𝑘
𝑗=0 ] (21) 

 

and 

 

   𝜎 =  (𝜇 − 𝜆), 

 

   𝐶0
𝑘 = 1 , 𝐵0

𝑘 = 0,   𝑘 ≥ 0, 

 

   𝐶𝑘
𝑘 = 𝐵𝑘

𝑘 , 𝐵𝑘
𝑘 = 𝐶𝑘−1

𝑘 + 𝐵𝑘−1
𝑘 ,  𝑘 ≥ 1, 

 

   𝐶𝑗−1
𝑘 = 𝐶𝑗−2

𝑘 + 𝐶𝑗−1
𝑘−1, 𝐵𝑗−1

𝑘 = 𝐵𝑗−2
𝑘 +  𝐵𝑗−1

𝑘−1,𝑘 ≥ 1. 

 

In Figure 5, the time profile of 𝑃𝑘(𝑡) is determined 

with the given transition rates value mentioned  

on the figure caption for different values of 𝑘. 

 
 

Figure 5. 𝑃𝑘(𝑡) time profile for transition rates  

(𝜆 = 8−3/ℎ, 𝜇 = 1.5−1/ℎ)  

 

The assessment of the number of transitions out  

of and into a given set of states, within a given 

interval of time, is of great interest in many 

applications. The model opens the possibility  

to determine, within a given interval of time, other 

probabilistic quantities such as: the expected number 

of cycles, the most probable number of cycles,  

the least probable number of cycles and the 

meantime between successive cycles. 

 

8. Sequential transitions 
 

It is more than frequent that big crises occur as 

results of undesired and failure sequential events.  

Analysts are then interested in assessing sequential 

events. We may distinguish two different approaches 

to perform sequential event analyses: a dynamic 

approach and a static one. 

Both approaches may schematically be represented 

on the form of event trees. Both can also be 

represented mathematically by integrations.  

 

8.1. Dynamic sequential assessment 
 

The occurrence probability of a sequence of 

transitions occur in that order {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛} and 

their occurrence times are {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}, such as 

{𝑡1 <  𝑡2 <  𝑡3 <  … < 𝑡𝑛< t} can be described  

by the following integral equations [12]: 

 

   𝑃𝑛(𝑡) 

   = ∫ 𝜌1(𝑡1)𝑑𝑡1

𝑡

0

∫ 𝜌2(𝑡2)𝑑𝑡2

𝑡

𝑡1

… ∫ 𝜌𝑛(𝑡𝑛)𝑑𝑡𝑛

𝑡

𝑡𝑛−1

, 

 (22) 

 

where 𝜌𝑖(𝑡) is the density probability function of the 

transition 𝑖, 𝑖 = 1,2, … , 𝑛.  

This model is dynamic as the occurrence times may 

happen at any instant of time between 0 and 𝑡.  
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The only restriction is to occur in the given 

sequential order {𝑡1 <  𝑡2 <  𝑡3 <  … < 𝑡𝑛 < 𝑡}. 

If the occurrence rates of all the transitions are 

constant in time, i.e., all the transition are obeying to 

Poisson Stochastic Processes characterized by their 

time-constant transitions rates {𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑛},  

the solution of (12) have the following form:  

 

   𝑃𝑛(𝑡) =  ∑ 𝐶𝑗
𝑛 · (1 − 𝑒

−(∑ 𝜆𝑙
𝑛
𝑙=𝑛−𝑗+1 )𝑡

)𝑛
𝑗=1 , (23) 

 

where 

 

   𝐶1
1 = 1, 

 

   𝐶1
𝑖+1 =  ∑ 𝐶𝑗

𝑖𝑖
𝑗=1 , 

 

   𝐶𝑗+1
𝑖+1 =  −

𝜆𝑖

∑ 𝜆𝑙
𝑖+1
𝑙=𝑖−𝑗+1

𝐶𝑗
𝑖, 

 

for all 𝑗 = 1, 2, … , 𝑖  and  𝑖 = 1, 2, … , 𝑛. 

 

In Figure 6, the time profile of the occurrence 

probability of a given sequence composed of four 

transitions characterized by their occurrence rates 

{8 · 10−1, 4 · 10−1, 2 · 10−1, 1 · 10−1/ℎ}. 

Results are traced for two occurrence reversal orders: 

the occurrence rates decreasing order (blue-line) and 

the increasing order (red-line).  

 

 
 

Figure 6. 𝑃𝑛(𝑡) of the sequence {𝐸1, 𝐸2, 𝐸3, 𝐸4}  

in two reversal orders 

 

8.2. Static sequential model 
 

In the case of the static sequential modelling, the 

sequential transitions still occur one after the other. 

But each transition happens within a prefixed time-

interval Δ.   

In this case, the sequence {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛} has 

fixed occurrence time-intervals {Δ1, Δ2, Δ3, … , Δ𝑛}. 

Given the density probability functions of the 

transitions, 𝜌𝑖(𝑡) (𝑖, 𝑖 = 1,2, … , 𝑛), the occurrence 

probability 𝑃𝑛(𝑡) of the sequence {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛} 

will be described by the following integral equations: 

 

   𝑃𝑛(𝑡) 

   = ∫ 𝜌1(𝑡1)𝑑𝑡1
Δ1

0 ∫ 𝜌2(𝑡2)𝑑𝑡2
Δ1+Δ2

Δ1
 

   … ∫ 𝜌𝑛(𝑡𝑛)𝑑𝑡𝑛
∑ Δ𝑖

𝑛
1

∑ Δ𝑖
𝑛−1
1

. (24) 

 

Having fixed the integral interval of each transition 

separately, the (24) can then be written as: 

 

   𝑃𝑛(𝑡)  

   = (∫ 𝜌1(𝑡1)𝑑𝑡1
Δ1

0
) (∫ 𝜌2(𝑡2)𝑑𝑡2

Δ1+Δ2

Δ1
) 

   … ( ∫ 𝜌𝑛(𝑡𝑛)𝑑𝑡𝑛

∑ Δ𝑖
𝑛
1

∑ Δ𝑖
𝑛−1
1

). 

 

Finally, the integral takes the following form: 

 

   𝑃𝑛(𝑡) = ∏ 𝑝𝑖(Δ𝑖)𝑛
𝑖=1 . (25) 

 

The sequential model is reduced into the form of an 

independent occurrence of each event ‘𝑖’ within its 

own interval ‘Δ𝑖’. 

 

9. Sectorial end-users  
 

To demonstrate the sectorial extension of the 

reliability-based models to support decision-making, 

we give four heterogenous sectorial applications in 

the following.  

In neuroscience the “optimal decision-making” 

problem constitutes making optimal use of sensory 

information that mind processes. One typical 

example of decision-making within a dynamic and 

random conditions is driving a car. The reliability 

models are used to approach the patterns of mind 

reasoning [5], [8]–[10].  

In AI and automation field for clinical applications, 

probabilistic decision making is also exploiting and 

developing reliability-based models in view of 

developing smart diagnosis algorithms [1], [3],  

[6]–[7], [25], [40]. 

In drinking water network design and maintenance, 

RMs are used to enhance the water quality, to detect 

and predict aging and to optimize maintenance and 

periodic testing [32]–[34]. 

For Critical Infrastructure Protection (CIP), the RMs 

are developed to model and assess the CIP resilience 

[13], [23], [31].  

RMs are also used in design decision-making, 

especially, if the design object is the first-of-the kind.  

The assessment of a future fusion power reactor is 

one case [15]. 
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Table 1. Paradigms of the most used models  

to support decision-making per sector 
 

# Sector  

D
et

er
m

in
is

ti
c 

D
et

er
m

.+
U

n
ce

rt
ai

n
. 

P
ro

b
ab

il
is

ti
c 

1 Accident Analysis  x x 

2 Aeronautic + Spatial Design  x x 

3 Behavioural Analysis & Profiling  x x 

4 Blockchain Management   x 

5 
Civil Engineering Conventional 

Design 
x x  

6 
Civil Engineering Offshore 

Design 
x x x 

7 Crisis Management  x x 

8 Critical Infrastructure Protection x x x 

9 Customs Inspection Activities  x x 

10 
Epidemiological Crisis 

Management 
 x x 

11 
Financial Risk & Stock Market 

Management 
 x x 

12 Hydraulic Works & Circuits Des. x x  

13 
Information Analytics & 

Intelligence  
 x x 

14 Insurance  x x 

15 Maintenance Optimisation  x x x 

16 Periodic Testing   x x 

17 Pharmaceutical & Drugs Testing  x x 

18 Preventive Maintenance   x x 

19 Quality Control  x x 

20 
Random Mechanical Loading on 

Structures  
 x x 

Total     5 19 18 

 

In the nuclear power plants safety and accident 

consequences prediction, the mythical WASH-740 

[39], studied the possible consequences of a 

hypothetical major accident on Long Island  

New York reactor (1957) but the used models were 

inadequate. Then WASH-1400 on “Reactor Safety 

Study” was published on 1975 for updating purpose 

by introducing a reliability-based models [38]. 

WASH-1400 was then updated by NUREG-1150 

[30]. Last updating is the report NRC-ML1734 

(2019) [29]. NRC-ML1734 used deterministic-

integrated uncertainty and probabilistic models.  

In the aviation sector, the AFF developed 

probability-based regulations to enhance safety [16]. 

Besides, EU research & innovation programs finance 

activities to develop probabilistic models to support 

risk-based decision making in view of enhancing the 

aviation sector operational safety [36]. 

Today, probabilistic risk-informed decision-making 

in normal operational and anormal operational 

situations are the most used in nuclear, aeronautics 

and security sectors.  

Table 1 presents a non-exhaustive sample of sectors 

that use reliability models to perform assessments 

supporting their decision-making activities.  

The sectors are classified according to the paradigms 

of the used models not by the used models. 

The three paradigms used in the classification are: 

the deterministic, deterministic uncertainty-informed, 

and probabilistic.  

It is very instructive to note that only 5 sectors over 

20 use deterministic models (not exclusively) for risk 

assessments & management. 

It is equally notable that only one sector uses 

exclusively the (full) probabilistic approach. This the 

Blockchain management sector. 

We underline lastly that the most used paradigm is 

the coupled deterministic-uncertainty one but not 

exclusively with a score of 19/20, Table 1.  

 

10. Conclusion  
 

This paper is intended to give a comprehensive note 

on reliability-based models, exclusively, the binary 

conceptual models. The implementation of the 

reliability-based models in a risk-based decision-

making process enhances its dynamic and predictive 

capabilities.  

However, with the accelerating growing of Man’s 

engineering knowledge and technologies, systems 

become more and more complex in all its 

dimensions: conceptual, functional, smartness, 

distributed, and compliance with societal concerns 

about risk & safety. The management of this growing 

complexity requires developing RMs that can 

compose and decompose the system at different level 

of its complexity without losing its dynamic 

characteristics. These dynamic characteristics are 

stored in the triplet (𝜆(𝑡), 𝜇(𝑡), 𝛾) that characterize 

every system whatever its complexity level is. This is 

the reason of focusing exclusively on the binary 

concept models to manage the growing system 

complexity. This binary vision is straight forward 

once a “success function” or a “utility function” is 

fixed for the multistate real systems.  

However, the author is fully aware of the possibility 

that a multistate system may have more than one 

“success function” within a given mission and with 
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the same interval of time. The answer to this 

situation is also straight forward using the binary 

based RMs, even if we have not treated this point in 

the paper for the sake of treating the most direct 

issues with the binary RMs. These direct issues are 

those related and defined by the minimal 

probabilistic and dynamic characteristic necessary  

to satisfy the differential equation pattern given 

precedingly. 

The paper focuses on the potential of the binary 

conceptual models, besides its probabilistic and 

dynamic characteristics, to assess the following: 

 the probability to be in/out of a given state of a 

set of states of interest at time “t”, 

 the sojourn probability in/out of a given state 

of a set of states of interest within a time 

interval “𝑇”, 

 the occurrence probability of a well-defined 

sequence of transitions within a time interval 

“𝑇”, 

 the probability the nth occurrence of a well-

defined transitions-cycling within a time 

interval “𝑇”. 

The paper was purposely limited to theses four 

dynamic and predictive quantities. Their sectorial 

applicative potentiality is almost unlimited. Some  

of these sectors have already been mentioned  

above.  

The potential applicability of the RMs is not indeed 

the only factor to explain their sectorial expansion. 

But this expansion is also explained by the growing 

technical and technological complexity of the 

modern systems.  

Developing advanced RMs is the right response  

to the pressing demand induced by the growing 

complexity of modern systems. 
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